
Introduction to machine learning
with Python and scikit-learn

Gaël Varoquaux

scikit

machine learning in Python

The MOOC

Module 1. The Predictive Modeling Pipeline
1. Tabular data exploration

Getting familiar with Python dataframes
2. Fitting a scikit-learn model on numerical data

Getting familiar with scikit-learn
3. Handling categorical data

Getting familiar with data transformations

We will go over some “theory” and cover practice after

G Varoquaux 2

1 The machine learning setting

2 Scikit-learn 101

3 Data transformation & pipeline

4 In depth with some estimators

5 Text mining

G Varoquaux 3

1 The machine learning setting
Adjusting models for prediction

G Varoquaux 4

1 A different statistical-modeling philosophy

Focus on the output (predictions) of models
not the components

Example: attendance = f (context)
f could be anything

In practice input data (context) is typically multiple “features”
Example: context = {temperature, time, weekday}

Traditional statistical modeling focuses on credible f
attendance = w1 temperature +w2 time +w3 weekday

Inference and reasonning on model parameters (w1, w2, w3)

G Varoquaux 5

1 Machine learning in a nutshell: an example
Face recognition

Andrew Bill Charles Dave

G Varoquaux 6

1 Machine learning in a nutshell: an example
Face recognition

Andrew Bill Charles Dave

?G Varoquaux 6

1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names that go with

them.
2 From a new (noisy) images, find the image that is most similar.

“Nearest neighbor” method

How many errors on already-known images?
... 0: no errors

Test data ̸= Train data

G Varoquaux 7

1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names that go with

them.
2 From a new (noisy) images, find the image that is most similar.

“Nearest neighbor” method
How many errors on already-known images?

... 0: no errors

Test data ̸= Train data

G Varoquaux 7

1 Machine learning in a nutshell
A simple method:
1 Store all the known (noisy) images and the names that go with

them.
2 From a new (noisy) images, find the image that is most similar.

“Nearest neighbor” method
How many errors on already-known images?

... 0: no errors

Test data ̸= Train data

G Varoquaux 7

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y

x

y

Which model to prefer?

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y

x

y

Problem of “over-fitting”
Minimizing error is not always the best strategy (learning noise)
Test data ̸= train data

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y

x

y

Prefer simple models = concept of “regularization”
Balance the number of parameters to learn with the amount of data

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y

x

y

Prefer simple models = concept of “regularization”
Balance the number of parameters to learn with the amount of data

Bias variance tradeoff

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y
Two descriptors: 2 dimensions

X_1

X_2

y

More
parameters

G Varoquaux 8

1 Machine learning in a nutshell: regression
A single descriptor: 1 dimension

x

y
Two descriptors: 2 dimensions

X_1

X_2

y

More
parameters

⇒ Model with more parameters need much more data
“curse of dimensionality”

G Varoquaux 8

1 Some formalism: bias and regularization

Settings: data (X, y), prediction y ∼ f (X, w)
Our goal: minimizew E[∥y − f (X, w)∥]

We only can measure ∥y − f (X, w)∥

G Varoquaux 9

1 Some formalism: bias and regularization

Settings: data (X, y), prediction y ∼ f (X, w)
Our goal: minimizew E[∥y − f (X, w)∥]

We only can measure ∥y − f (X, w)∥

Prediction is very difficult, especially about the future.
Niels Bohr

G Varoquaux 9

1 Some formalism: bias and regularization

Settings: data (X, y), prediction y ∼ f (X, w)
Our goal: minimizew E[∥y − f (X, w)∥]

We only can measure ∥y − f (X, w)∥

Solution: bias w to push toward a plausible solution
In a minimization framework: minimizew ∥y − f (X, w)∥ + p(w)

G Varoquaux 9

1 Summary: elements of a machine-learning method

A forward model: ypred = f (X, w)
Numerical rules to go from X to y

A loss, or data fit
A measure of error between ytrue and ypred
Can be given by a noise model

Regularization:
Any way of restricting model complexity

- by choices in the model
- via a penalty

G Varoquaux 10

1 Model validation

x

y

x

y

Only performance on new data can evaluate model predictions
(a good model estimates E[y |X])

Cross-validation:
Split the data (leave out 10%)
Train model on a train set
Evaluate prediction error on test set
Repeat many times Test setTrain set

Full data

Common errors:
All operations needed to fit the model must be done on train set only

data reduction, transformation, feature selection, parameter selection

Testing several models with cross-validation and picking the best gives
an optimistic and unreliable estimation of model performance.

G Varoquaux 11

1 Model validation

x

y

x

y

Only performance on new data can evaluate model predictions
(a good model estimates E[y |X])

Cross-validation:
Split the data (leave out 10%)
Train model on a train set
Evaluate prediction error on test set
Repeat many times Test setTrain set

Full dataCommon errors:
All operations needed to fit the model must be done on train set only

data reduction, transformation, feature selection, parameter selection

Testing several models with cross-validation and picking the best gives
an optimistic and unreliable estimation of model performance.

G Varoquaux 11

2 Scikit-learn 101

scikit

machine learning in Python

G Varoquaux 12

2 A tool in a wider Python ecosystem

A Python library
To be combined:
- pandas: dataframes
- matplotlib, seaborn: plotting
- numpy: numerical arrays
Used in scripts or IPython notebooks

Simple usage
from s k l e a r n import l i n e a r m o d e l
c l a s s i f i e r = l i n e a r m o d e l . L o g i s t i c R e g r e s s i o n ()
c l a s s i f i e r . f i t (X t r a i n , Y t r a i n)
Y t e s t = c l a s s i f i e r . p r e d i c t (X t e s t)

G Varoquaux 13

2 API: specifying a model

A central concept: the estimator
Instanciated without data
But specifying the parameters

from s k l e a r n . n e i g h b o r s import K N e a r e s t N e i g h b o r s

e s t i m a t o r = K N e a r e s t N e i g h b o r s (n n e i g h b o r s =2)

n neighbors: model parameters

G Varoquaux 14

2 API: training a model

Training from data
e s t i m a t o r . f i t (X t r a i n , Y t r a i n)

with:
X a data array with shape nsamples × nfeatures

y a numpy 1D array, of ints or float, with shape nsamples

G Varoquaux 15

2 API: using a model

Prediction: classification, regression
Y t e s t = e s t i m a t o r . p r e d i c t (X t e s t)

Transforming: dimension reduction, filter
X new = e s t i m a t o r . t r a n s f o r m (X t e s t)

Test score, density estimation
t e s t s c o r e = e s t i m a t o r . s c o r e (X t e s t)

G Varoquaux 16

2 Model evaluation: cross-validation

scores = cross val score(estimator, X, y)

Test setTrain set

Full data

x

y

x

y

G Varoquaux 17

3 Data transformation & pipeline

Transforming data (pandas dataframes)
to numerical matrices (numpy arrays)
(preprocessing)

G Varoquaux 18

3 Data tables are not only numbers
df = pd.read csv(’employee_salary.csv’)

Gender Date Hired Employee Position Title
M 09/12/1988 Master Police Officer
F 06/26/2006 Social Worker III

M 07/16/2007 Police Officer III
F 01/26/2000 Library Assistant I

Convert all values to numerical

Gender = categorical column: One-hot encode

G Varoquaux 19

3 Data tables are not only numbers
df = pd.read csv(’employee_salary.csv’)

Gender Date Hired Employee Position Title
M 09/12/1988 Master Police Officer
F 06/26/2006 Social Worker III

M 07/16/2007 Police Officer III
F 01/26/2000 Library Assistant I

Convert all values to numerical
Gender = categorical column: One-hot encode
one hot enc = sklearn . preprocessing .OneHotEncoder()
one hot enc. fit transform (df[[’Gender’]])

Gender (M) Gender (F) ...
1 0
0 1
1 0
0 1

G Varoquaux 19

3 Transformers: fit & transform

Separating fitting from transforming
Avoids data leakage
Can be used in a Pipeline and cross val score

One-hot encoder
one hot enc. fit (df[[’Gender’]])
X = one hot enc.transform(df[[’Gender’]])

1) store which categories are present
2) encode the data accordingly

Prefer to pd.get dummies because columns are defined from train set, and
do not change with test set

G Varoquaux 20

3 Data transformations: Transformers

Model state

transformer.transform(data)

data
transformed

data

learning the transformation (.fit) ̸= applying it (.transform)
- Feature scaling - Transforming categorical variables...
Train time
ohe = OneHotEncoder ()
ohe . f i t (X t r a i n , y t r a i n)
X t r a i n e n c o d e d = ohe . t r a n s f o r m (X t r a i n , y t r a i n)
e s t i m a t o r . f i t (X t r a i n e n c o d e d)

G Varoquaux 21

3 Data transformations: Transformers

Model state

transformer.transform(data)

data
transformed

data

learning the transformation (.fit) ̸= applying it (.transform)
- Feature scaling - Transforming categorical variables...
Test time
X t e s t e n c o d e d = ohe . t r a n s f o r m (X t e s t)
y p r e d = e s t i m a t o r . p r e d i c t (X t e s t e n c o d e d)

G Varoquaux 21

3 Data transformations: Transformers

Model state

transformer.transform(data)

data
transformed

data

learning the transformation (.fit) ̸= applying it (.transform)
- Feature scaling - Transforming categorical variables...

ohe = OneHotEncoder ()
ohe . f i t (X t r a i n , y t r a i n)
X t r a i n e n c o d e d = ohe .

t r a n s f o r m (X t r a i n ,
y t r a i n)

e s t i m a t o r . f i t (
X t r a i n e n c o d e d)

X t e s t e n c o d e d = ohe .
t r a n s f o r m (X t e s t)

y p r e d = e s t i m a t o r . p r e d i c t (
X t e s t e n c o d e d)

G Varoquaux 21

3 Chaining operations: The pipeline

Pipeline = transformation1 → (transformation2 . . . →) predictor
pipe = make pipeline(ohe, estimator)

Replace:
ohe = OneHotEncoder ()
ohe . f i t (X t r a i n , y t r a i n)
X t r a i n e n c o d e d = ohe .

t r a n s f o r m (X t r a i n ,
y t r a i n)

e s t i m a t o r . f i t (
X t r a i n e n c o d e d)

X t e s t e n c o d e d = ohe .
t r a n s f o r m (X t e s t)

y p r e d = e s t i m a t o r . p r e d i c t (
X t e s t e n c o d e d)

with:
pipe.fit(X train, y train) pipe.predict(X test)

G Varoquaux 22

3 Data tables: dates
df = pd.read csv(’employee_salary.csv’)

Gender Date Hired Employee Position Title
M 09/12/1988 Master Police Officer
F 06/26/2006 Social Worker III

M 07/16/2007 Police Officer III
F 01/26/2000 Library Assistant I

Convert all values to numerical
Date: use pandas’ datetime support

d a t e s = pd. t o d a t e t i m e (d f [’Date First Hired ’])
the values hold the data in secs
d a t e s . v a l u e s . a s t y p e (float)

G Varoquaux 23

3 Transformers: dates
Simplified object for dates – The dirty cat module
DatetimeEncoder: features for different time regularity
from d i r t y c a t import Dat e t imeEncode r

d a t e t r a n s = Dat e t imeEncode r ()
X = d a t e t r a n s . f i t t r a n s f o r m (d f [’Date First Hired ’]

month, day, hour, dayofweek

Installing a new package
In the notebook: %pip install dirty-cat

G Varoquaux 24

3 Transformers: dates
Simplified object for dates – The dirty cat module
DatetimeEncoder: features for different time regularity
from d i r t y c a t import Dat e t imeEncode r

d a t e t r a n s = Dat e t imeEncode r ()
X = d a t e t r a n s . f i t t r a n s f o r m (d f [’Date First Hired ’]

month, day, hour, dayofweek

Installing a new package
In the notebook: %pip install dirty-cat

G Varoquaux 24

3 Transformers: General case

Separating fitting from transforming
Avoids data leakage
Can be used in a Pipeline and cross val score

For dates: FunctionTransformer
def date2num (d a t e s t r):

out = pd. t o d a t e t i m e (d a t e s t r). v a l u e s . a s t y p e (np.float)
return out . r e s h a p e ((-1, 1)) # 2D output

d a t e t r a n s = p r e p r o c e s s i n g . F u n c t i o n T r a n s f o r m e r (
f u n c = date2num , v a l i d a t e = F a l s e)

X = d a t e t r a n s . t r a n s f o r m (d f [’Date First Hired ’]

G Varoquaux 25

3 ColumnTransformer: assembling
Applies different transformers to columns

These can be complex pipelines
c o l u m n t r a n s = compose . m a k e c o l u m n t r a n s f o r m e r (

(o n e h o t e n c , [’Gender ’, ’Employee Position Title ’]),
(d a t e t r a n s , ’Date First Hired ’),

)

X = c o l u m n t r a n s . f i t t r a n s f o r m (d f)

From DataFrame to array
with heterogeneous preprocessing & feature engineering

G Varoquaux 26

3 ColumnTransformer: assembling
Applies different transformers to columns

These can be complex pipelines
c o l u m n t r a n s = compose . m a k e c o l u m n t r a n s f o r m e r (

(o n e h o t e n c , [’Gender ’, ’Employee Position Title ’]),
(d a t e t r a n s , ’Date First Hired ’),

)

X = c o l u m n t r a n s . f i t t r a n s f o r m (d f)

Benefit: model evaluation on dataframe
model = make pipeline(column trans, HistGradientBoostingClassifier)
scores = cross val score(model, df, y)

G Varoquaux 26

3 ColumnTransformer: assembling
Applies different transformers to columns

These can be complex pipelines
c o l u m n t r a n s = compose . m a k e c o l u m n t r a n s f o r m e r (

(o n e h o t e n c , [’Gender ’, ’Employee Position Title ’]),
(d a t e t r a n s , ’Date First Hired ’),

)

X = c o l u m n t r a n s . f i t t r a n s f o r m (d f)

Simplified object – The dirty cat module
TableVectorizer: applies transformers depending on columns types
from d i r t y c a t import T a b l e V e c t o r i z e r
t a b v e c = T a b l e V e c t o r i z e r ()

X = t a b v e c . f i t t r a n s f o r m (d f)

“Automagic” choices: defaults can be improved
G Varoquaux 26

The MOOC

Module 1. The Predictive Modeling Pipeline
1. Tabular data exploration

Getting familiar with Python dataframes
2. Fitting a scikit-learn model on numerical data

Getting familiar with scikit-learn
3. Handling categorical data

Getting familiar with data transformations

Questions, difficulties?

G Varoquaux 27

4 In depth with some estimators

scikit

machine learning in Python

G Varoquaux 28

4 Linear models

is soup = .5 · carrot − 1.2 · flour − .4 · sugar + .6 · leak . . .

Can handle large number of features
“interpretable”

Interpretability pitfalls:
- Feature scaling matter:

features with larger scale → smaller coefficient

- Coefficients are conditional relations
they must be understand “all other features kept constant”
eg wage decreases with age, keeping experience constant

https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_

model_coefficient_interpretation.html

G Varoquaux 29

https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html

4 Linear models

is soup = .5 · carrot − 1.2 · flour − .4 · sugar + .6 · leak . . .

Can handle large number of features
“interpretable”

Regression:
sklearn.linear model.Ridge

sklearn.linear model.RidgeCV

x

y

Classification: logistic regression
sklearn.linear model.LogisticRegression

sklearn.linear model.LogisticRegressionCV
’l2’ and ’l1’ penalties different solvers

x

y

G Varoquaux 29

4 Tree models (eg for heterogeneous columnar data)

Decision trees:
robust to strange data
distributions1 staircase

3 2 10 1 2 3
3
2
1
0
1
2
3
4

De
cis

io
nT

re
e

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

3 2 10 1 2 3
3
2
1
0
1
2
3
4

Ra
nd

om
Fo

re
st

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

Ensemble methods:
combine many trees

Random forests

sklearn.ensemble.
RandomForestClassifier

3 2 10 1 2 3
3
2
1
0
1
2
3
4

De
cis

io
nT

re
e

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

3 2 10 1 2 3
3
2
1
0
1
2
3
4

Ra
nd

om
Fo

re
st

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

G Varoquaux 30

4 Tree models (eg for heterogeneous columnar data)

Decision trees:
robust to strange data
distributions1 staircase

3 2 10 1 2 3
3
2
1
0
1
2
3
4

De
cis

io
nT

re
e

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

3 2 10 1 2 3
3
2
1
0
1
2
3
4

Ra
nd

om
Fo

re
st

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

Ensemble methods:
combine many trees

Random forests

sklearn.ensemble.
RandomForestClassifier

3 2 10 1 2 3
3
2
1
0
1
2
3
4

De
cis

io
nT

re
e

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

3 2 10 1 2 3
3
2
1
0
1
2
3
4

Ra
nd

om
Fo

re
st

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

G Varoquaux 30

4 Tree ensembles
Ensemble: combining many trees

Random forests
sklearn.ensemble.RandomForestClassifier

Build many trees on random pertubation of the data
Average decisions

More trees –higher n estimators is better but more expensive

Boosted trees
sklearn.ensemble.HistGradientBoostingClassifier

3 2 10 1 2 3
3
2
1
0
1
2
3
4

De
cis

io
nT

re
e

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

3 2 10 1 2 3
3
2
1
0
1
2
3
4

Ra
nd

om
Fo

re
st

3 2 10 1 2 3

2
1
0
1
2
3

2 1 0 1 2 3
2
1
0
1
2

G Varoquaux 31

4 Gradient-boosted regression trees

1 staircase

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors
Keep going

Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Gradient-boosted regression trees

1 staircase
2 staircases combined

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors

Keep going
Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Gradient-boosted regression trees

1 staircase
2 staircases combined
3 staircases combined

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors
Keep going

Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Gradient-boosted regression trees

1 staircase
2 staircases combined
3 staircases combined
300 staircases combined

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors
Keep going

Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Gradient-boosted regression trees

1 staircase
2 staircases combined
3 staircases combined
300 staircases combined

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors
Keep going

Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Gradient-boosted regression trees

1 staircase
2 staircases combined
3 staircases combined
300 staircases combined

Fit with a tree of depth 10
staircase of 10 constant values

Fit a new tree on errors
Keep going

Boosted regression trees

Two important parameters:
The depth of the tree
The learning rate

sklearn.ensemble.HistGradientBoostingClassifier deals
naively with missing values.

G Varoquaux 32

4 Deep learning and representations
A function to decided if a cat is present?

Very non-local and complex function

In practice:
Reuse an existing pretrained architecture
Use a linear model or tree model
on an intermediate representation

Software: keras

Devil is in details:
same image resolution, same colors

G Varoquaux 33

4 Deep learning and representations

Deep learning: build the function
by chaining transformations

Input Intermediate repre-
sentations

Great on complex natural signals
Requires a huge amount of data & compute power

In practice:
Reuse an existing pretrained architecture
Use a linear model or tree model
on an intermediate representation

Software: keras

Devil is in details:
same image resolution, same colors

G Varoquaux 33

4 For text data
Linear estimators

Can handle large number of features
Typically a logistic regression

sklearn.linear model.SGDClassifier
For on-line estimator

Naive Bayes
Very good for many classes
On-line estimator

+ chi2 feature selection

G Varoquaux 34

5 Text mining

G Varoquaux 35

Text as data

G Varoquaux 36

5 Scrapping the EuroPython abstracts
173 talks and counting:

How OpenStack makes Python better (and vice-versa)
Introduction to aiohttp

So you think your Python startup is worth $10 million...
SQLAlchemy as the backbone of a Data Science company

Learn Python The Fun Way
Scaling Microservices with Crossbar.io

If you can read this you don’t need glasses

Let’s find some common topics

G Varoquaux 37

5 Scrapping the EuroPython abstracts
173 talks and counting:

How OpenStack makes Python better (and vice-versa)
Introduction to aiohttp

So you think your Python startup is worth $10 million...
SQLAlchemy as the backbone of a Data Science company

Learn Python The Fun Way
Scaling Microservices with Crossbar.io

If you can read this you don’t need glasses

Let’s find some common topics

Anyone who has used Python to search text
for substring patterns has at least heard of
the regular expression module. Many of us
use it extensively for parsers and lexers,

The py.test tool presents a rapid and simple

way to write tests for your Python code. This

training gives a quick introduction with exercises

into some distinguishing features.Chat with the core developers about how

to extend django CMS or how to integrate

your own apps seamlessly. Lets talk about

your plugins, apphooks, toolbar extensions

G Varoquaux 37

5 Scrapping the EuroPython abstracts
173 talks and counting:

How OpenStack makes Python better (and vice-versa)
Introduction to aiohttp

So you think your Python startup is worth $10 million...
SQLAlchemy as the backbone of a Data Science company

Learn Python The Fun Way
Scaling Microservices with Crossbar.io

If you can read this you don’t need glasses

Let’s find some common topics

Anyone who has used Python to search text
for substring patterns has at least heard of
the regular expression module. Many of us
use it extensively for parsers and lexers,

The py.test tool presents a rapid and simple

way to write tests for your Python code. This

training gives a quick introduction with exercises

into some distinguishing features.Chat with the core developers about how

to extend django CMS or how to integrate

your own apps seamlessly. Lets talk about

your plugins, apphooks, toolbar extensions

import urllib2, bs4

import sklearn,
 wordcloud

G Varoquaux 37

5 Vectorizing webpages to numbers
Crawl

the schedule to get a list of titles and URLs
talk pages to retrieve abstract and tags

bs4: beautiful soup, matchings on the DOM tree

Vectorize

G Varoquaux 38

5 Vectorizing webpages to numbers
Crawl

the schedule to get a list of titles and URLs
talk pages to retrieve abstract and tags

bs4: beautiful soup, matchings on the DOM tree

Common preparation steps
Normalization
”Man” → ”man”

Stemming
”consult”
”consultant” → ”consult”
”consulting”

Software: nltk, spacy

Vectorize

G Varoquaux 38

5 Vectorizing webpages to numbers
Crawl

the schedule to get a list of titles and URLs
talk pages to retrieve abstract and tags

bs4: beautiful soup, matchings on the DOM tree

Vectorize
Anyone who has used Python to search text
for substring patterns has at least heard of
the regular expression module. Many of us
use it extensively for parsers and lexers,

The py.test tool presents a rapid and simple

way to write tests for your Python code. This

training gives a quick introduction with exercises

into some distinguishing features.Chat with the core developers about how

to extend django CMS or how to integrate

your own apps seamlessly. Lets talk about

your plugins, apphooks, toolbar extensions

a
can
code

is
module
profiling

performance
Python

the

20
10
4

14
3
2
1
9

18

Term Freq

G Varoquaux 38

5 Vectorizing webpages to numbers
Crawl

the schedule to get a list of titles and URLs
talk pages to retrieve abstract and tags

bs4: beautiful soup, matchings on the DOM tree

Vectorize
Anyone who has used Python to search text
for substring patterns has at least heard of
the regular expression module. Many of us
use it extensively for parsers and lexers,

The py.test tool presents a rapid and simple

way to write tests for your Python code. This

training gives a quick introduction with exercises

into some distinguishing features.Chat with the core developers about how

to extend django CMS or how to integrate

your own apps seamlessly. Lets talk about

your plugins, apphooks, toolbar extensions

a
can
code

is
module
profiling

performance
Python

the

20
10
4

14
3
2
1
9

18

Term Freq

1321
540
208
964
123

7
6

191
1450

All
docs

G Varoquaux 38

5 Vectorizing webpages to numbers
Crawl

the schedule to get a list of titles and URLs
talk pages to retrieve abstract and tags

bs4: beautiful soup, matchings on the DOM tree

Vectorize
Anyone who has used Python to search text
for substring patterns has at least heard of
the regular expression module. Many of us
use it extensively for parsers and lexers,

The py.test tool presents a rapid and simple

way to write tests for your Python code. This

training gives a quick introduction with exercises

into some distinguishing features.Chat with the core developers about how

to extend django CMS or how to integrate

your own apps seamlessly. Lets talk about

your plugins, apphooks, toolbar extensions

a
can
code

is
module
profiling

performance
Python

the

20
10
4

14
3
2
1
9

18

Term Freq

1321
540
208
964
123

7
6

191
1450

All
docs

.015

.018

.019

.014

.023

.286

.167

.047

.012

Ratio

TF-IDF in scikit-learn
sklearn.feature extraction.text.TfidfVectorizerG Varoquaux 38

5 Vectorizing

From raw data to a sample matrix X

For text data: counting word occurences
- Input data: list of documents (string)
- Output data: numerical matrix

G Varoquaux 39

5 Vectorizing

From raw data to a sample matrix X

For text data: counting word occurences
- Input data: list of documents (string)
- Output data: numerical matrix

from s k l e a r n . f e a t u r e e x t r a c t i o n . t e x t import
T i f d f V e c t o r i z e r

v e c t o r i z e r = T f i d f V e c t o r i z e r ()

X = v e c t o r i z e r . f i t t r a n s f o r m (documents)

G Varoquaux 39

5 The term-document matrix

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

d
o
c
u
m
e
n
t
s

the

Python

performance

profiling

module

is

code

can

a

Term-document matrix

 3 78
 9 7

79 7

 79
7527

 578

94 71
 6

 797

 97
 8

7

1
4 4

 9

 5
2 5

8

Can be a sparse matrix

High-dimensional learning problem
⇒ Linear models

(eg LogisticRegression)

G Varoquaux 40

5 The term-document matrix

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

d
o
c
u
m
e
n
t
s

the

Python

performance

profiling

module

is

code

can

a

Term-document matrix

 3 78
 9 7

79 7

 79
7527

 578

94 71
 6

 797

 97
 8

7

1
4 4

 9

 5
2 5

8

Can be a sparse matrix

High-dimensional learning problem
⇒ Linear models

(eg LogisticRegression)

G Varoquaux 40

5 The term-document matrix

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

d
o
c
u
m
e
n
t
s

the

Python

performance

profiling

module

is

code

can

a

Term-document matrix

 3 78
 9 7

79 7

 79
7527

 578

94 71
 6

 797

 97
 8

7

1
4 4

 9

 5
2 5

8

Can be a sparse matrix

High-dimensional learning problem
⇒ Linear models

(eg LogisticRegression)

G Varoquaux 40

Semantics

Relations between words

G Varoquaux 41

Semantics
Relations between words

G Varoquaux 41

5 Topic modeling: matrix factorization

03078
09070

7907

00790
75270

0578

94071
00600

0797

00970
00800

7000

10000
40040

0090

00050
20500

8000

d
o
c
u
m
e
n
t
s

the

Python

performance

profiling

module

is

code

can

a

→
03078

09070
7907

00790
75270

0578

94071
00600

0797

t
o
p
i
c
s

the

Python

performance

profiling

module

is

code

can

a
030

007

940

009

100

000

d
o
c
u
m
e
n
t
s

topic
s

+
What terms
are in a topics

What documents
are in a topics

A matrix factorization
Often with non-negative constraints

sklearn.decompositions.NMFG Varoquaux 42

5 On the EuroPython abstracts
Topic 1

G Varoquaux 43

5 On the EuroPython abstracts
Topic 2

G Varoquaux 43

5 On the EuroPython abstracts
Topic 3

G Varoquaux 43

5 On the EuroPython abstracts

G Varoquaux 43

5 Semantics and word embeddings
Distributional semantics: meaning of words
“You shall know a word by the company it keeps”

Firth, 1957

Example: A glass of red , please
Could be wine maybe juice?

wine and juice have related meanings

Embed words in vector space
so that close-by vectors correspond to
equally-likely contexts

salad

meat

juice

wine

glass

green

red

Center
word

U
:
w
or
d
em

b
ed
d
in
g

salad

meat

juice

wine

glass

red

green

Context
word

V
:
co
n
te
xt

em
b
ed
d
in
g

G Varoquaux 44

5 Precomputed word embeddings Trained on huge corpora
Word2vec FastText: robust to typos and new words

Transform words into vectors
⇒ Low-dimensional, dense inputs

⇒ richer machine-learning models

Software: gensim, fasttext

G Varoquaux 45

5 Precomputed word embeddings Trained on huge corpora
Word2vec FastText: robust to typos and new words

Transform words into vectors
⇒ Low-dimensional, dense inputs

⇒ richer machine-learning models

Software: gensim, fasttext

G Varoquaux 45

Sequence models

G Varoquaux 46

5 Traditional sequence models
Right language models: predict the next word

Recurrent Neural Network:
Probability((n + 1)th word |nth, (n − 1)th, . . .)

= f (nth word, Probability(nth word |(n − 1)th, (n − 2)th, . . .))
Challenge: long-distance links ⇒ LSTM
Also for left language models

Importance of language models predicting words
Difficulty of capturing long-distance relationships

G Varoquaux 47

5 Transformers
Masked language models

tok1

tok2

<msk>

tok4

Input
seq Stacked transformers

tok3

Reconstructed
seq

Extracts internal representations of word sequences

Software: Huggingface transformers

for longer texts, grammatical structure, distant syntax
G Varoquaux 48

5 References I

[Gribonval(2011)] R. Gribonval.
Should penalized least squares regression be interpreted as maximum a posteriori
estimation?
IEEE Transactions on Signal Processing, 59(5):2405–2410, 2011.

	The machine learning setting
	Scikit-learn 101
	Data transformation & pipeline
	In depth with some estimators
	Text mining

