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Joint work with Julie Josse(1), Imke Mayer(2), Gaël Varoquaux(3), Jean-Philippe Vert(4),
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Overview

A presentation in two parts:

1. a crash course on the potential outcome framework (�25min),

2. followed by a presentation of the review (�20min).

Why \causal" inference?

Neyman-Rubin potential outcomes framework

Joint analysis of experimental and observational data

Conclusion and perspectives
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Why “causal” inference?



Machine Learning VS Causal Inference

Machine learning: Predictive models relying on correlations.

Typical question: Given today’s weather, what’s the chance tomorrow’s

air pollution levels will be dangerously high?

Causal inference: We want to predict what would happen if we change

the system.

How does the answer to the above question change if we reduce the

number of cars on the road?

\what would happen if"? type of questions

As you already know, there are currently several schools of thought.
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Causal discovery VS Causal Inference

Typical questions about causation:

• Identifying causal direction between 2 variables (Work by Sch�olkopf,

Janzing, Guyon, Peters, and others)

• Learning causal graph structure from data e�ects (Work by

B�uhlmann, Maathuis, Pearl, Meinshausen)

Here, we assume that W causes Y and we want to estimate the effect

as accurately as possible (bias and variance).

) Statistical focus but using machine learning machinery

(computationally heavy tools or potentially heuristic approaches e.g.,

decision trees, neural networks, non-convex optimization)
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Examples of causal questions

) E�ect of a policy/intervention/treatment W on an outcome Y

• Is there an e�ect of �nancial incentives on teacher performance

(measured both directly by teacher absences and indirectly by

educational output measures, such as average class test scores). 1

• Do the students succeed because of the new teacher?

Had the students remained with the old teacher, wouldn’t they have

succeeded

• Do job training programs raise average future income?

• Is there an e�ect of social pressure on voter participation?

Neighbors mailing: the recent voting record of everyone on their

households would be sent to all their neighbors.

• What is the impact of an advertizing campaign?

• What is the e�ect of social media on mental health?

• What is the e�ect of hydroxychloroquine on mortality? 2

1Duflo et al. (2012)
2Sbidian et al. (2020) 5



Neyman-Rubin potential

outcomes framework



PO framework Neyman (1923), Rubin (1974), Imbens and Rubin (2015)

Remember: here we are given a treatment W and want to estimate the

e�ect. We are not seeking for causal variables.

Notations

• n iid samples (Xi ;Wi ;Yi (1);Yi (0)) 2 X � f0; 1g � R� R

• Individual causal e�ect of the treatment: �i , Yi (1)� Yi (0)

Missing problem: �i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

: : : : : : : : : : : :

-2 52 M 0 100 ?

Cov. Treat. Out.

X1 X2 X3 W Y

1.1 20 F 1 200

-6 45 F 0 10

0 15 M 1 150

: : : : : : : : :

-2 52 M 0 100
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PO framework - Average Treatment Effect

The average e�ect treatment (ATE) is the average di�erence of the

potential outcomes over the entire population:

� = E[Y (1)� Y (0)] = E[Y (1)]� E[Y (0)]

• It compares what would happen if the same people were treated or

not;

• In general E[Y (1)� Y (0)] 6= E[Y jW = 1]� E[Y jW = 0] . 7



PO framework - Which data?

Two different data types

Randomized Controlled Trial

or Interventional data (RCT)

• Unbiased estimate of the

average treatment e�ect

(ATE)

• Examples:

• Advertising experiments at

Facebook

• Clinical trial

High internal validity

Real World data (RWD)

or Observational data

• Large amount of data

re
ecting day-to-day practice,

but with confounding

• Examples:

• Electronic Health Record

(EHR)

• Public policies analysis

High external validity
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Randomized Controlled Trial

Identifiability assumptions

• Yi = Wi Yi (1) + (1�Wi )Yi (0) (consistency)

• Wi ?? fYi (0);Yi (1);Xig (random treatment assignment)

Flip a coin to assign the treatment

We can check that � = E[∆i ] = E[Yi (1)]� E[Yi (0)]

= E[Yi (1)jWi = 1]� E[Yi (0)jWi = 0]

= E[Yi jWi = 1]� E[Yi jWi = 0]

) Although �i never observed, � is identi�able and can be estimated

Difference-in-means estimator

�̂DM =
1

n1

X
Wi =1

Yi �
1

n0

X
Wi =0

Yi

�̂DM unbiased and
p

n-consistent
p

n (�̂DM � �)
d���!

n!1
N (0;VDM)
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P
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n0

P
Wi =0 Yi ; ATE = mean(red)-mean(blue) 9



RCT - Experimental data

• The distribution of the covariates for treated and control

patients is balanced (as many young/old; diabetic/non diabetic,

etc.) so that a simple di�erence in means estimator can be

consistent.

• Gold standard to assess the causal e�ect of an intervention or

treatment on an outcome.

Drawbacks

• expensive, take a long time to set, ethical limitations

• small sample size, due to either recruitment di�culties or restrictive

inclusion/exclusion criteria.

• narrowly-de�ned trial sample that is di�erent from the population

potentially eligible for the treatment

Lack of generalizability (external validity) to a target population. Study

in one company/hospital/state/country could fail to generalize to others

• Not designed for personalized medicine
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Observational data

Examples

ˆ Research: disease registries, epidemiological studies, biobanks/ data
routinely collected via EHR, insurance claims, administrative data

ˆ Less costly large sample representative of the target populations

Drawbacks: quality of these \big data"

ˆ Lack a controlled design opens the door toconfounding bias.

Fear of lack ofinternal validity , impossibility of completely ruling out
confounding bias.
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Observational data: non random assignment

Quantity of interest: E�ect of class size on students' performance

Figure 1: Source: Data from Ministry of Education

How would you compute this in practice? 12



Observational data: non random assignment

This is called a confounding e�ect, that can also be viewed as example of
the Simpson's paradox.
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Observational data: non random assignment

) Treatment assignment depends on covariatesX , thus observed
covariate distributions of treated and control are di�erent.

A confounder is a third variable that is related to both the exposure of
interest and the response.

Causal inference: control for confounding. Estimate causal relation
betweenW and Y when the study is confounded due to the absence of
randomization. 14



Assumption for ATE identi�ability: Unconfoundedness

Unconfoundedness: f Yi (0); Yi (1)g ?? Wi j Xi : Measure all possible
confounders.
ATE is not identi�able without assumption : it is not a sample size
problem, i.e., w/o it we cannot solve even with in�nite amount of data.

In other words: Unobserved confounders make it impossible to separate
correlation and causality when correlated to both the outcome and the
treatment.
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Unmeasured confounding

Cochran, 1972:observational studies require a good deal of humility because

we can only claim to be groping toward the truth. So, even though we're

studying the �eld of causal inference and we believe we'll do a better job of

getting that causality, we're not going to know for sure whether we're there.

Believe no unmeasured confounding holds? Use domain knowledge.

Some solutions for unmeasured confounding:Instrumental variables (a
variable which a�ects treatment assignment but not the outcome);
Sensitivity analysis, etc.

16



Solutions to estimate ATE with observational data

Now, suppose the unconfoundedness holds. What are the estimators?

Solutions' list

ˆ Matching : pair each treated (resp. untreated) patient with one or
more similar untreated (resp. treated) patient

ˆ Inverse-propensity weighting (IPW) : to adjust for biases in the
treatment assignment. Weighting groups so that control look like
treated in terms of distribution of X

ˆ Regression adjustment (di�erence between conditional
expectations)

ˆ Double robust methods (AIPW) for model misspeci�cations:
covariate balancing propensity score, augmented IPW.(Robins et al.,

1994)

17



Assumption for ATE identi�ability in obs. data: Overlap

The IPW estimator relies on a key quantity:the propensity score.

De�nition The propensity score:

e(x) , P(Wi = 1 j Xi = x) 8 x 2 X :

Assumption Overlap assumption:

� < e(x) < 1 � �; 8 x 2 X

and some� > 0

18



Inverse-propensity weighting (IPW) estimation of ATE

IPW estimator (Horvitz-Thomson, survey)

�̂ IPW ,
1
n

nX

i =1

�
Wi Yi

ê(Xi )
�

(1 � Wi )Yi

1 � ê(Xi )

�

) Intuition: Recognize the di�erence-in-means estimator with weights. It
turns observational study into a pseudo-randomized trial by re-weighting
) Consistent estimator of� whenê(�) consistent (e.g logistic regression)
) Issue: High variance (divide by probability that can be small).
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Regression adjustment

� (w) (x) , E[Y (w)jX = x]

OLS modelw 2 f 0; 1g
Yi (w) = c(w) + Xi � (w) + " i (w)

Using unconfoundedness assumption, we can show identi�ability.

� = E[� i ] = E[Yi (1) � Yi (0)]

= : : :

= E[E[Yi jWi = 1 ; Xi ] � E[Yi jWi = 0 ; Xi ]]

�̂ OLS =
1
n

nX

i =1

(�̂ 1(Xi ) � �̂ 0(Xi )) =
1
n

nX

i =1

(ĉ(1) + Xi �̂ (1) ) � (ĉ(0) + Xi �̂ (0) )

) Consistent if ^� (w) consistent 20



Regression adjustment - Link with Pearl's framework

Theorem (Backdoor adjustment criterion)

If a set of variables satis�es the backdoor criterion relative to(W ; Y ),
the causal e�ect ofW on Y can be identi�ed from observational data by
the adjustment formulaP[y j do(w)] =

P
x P[y j w; x]P[x].

Therefore the regression adjustment can be seen equivalently:

� = E [Y j do(W = w1)] � E [Y j do(W = w0)]

=
X

y

y(Pf y j do(w1)g � Pf y j do(w0)g):
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Doubly robust ATE estimation

De�ne � (w) (x) , E[Yi (w) j Xi = x] and e(x) , P(Wi = 1 j Xi = x).

Augmented IPW - Double Robust (DR)

�̂ AIPW , 1
n

P n
i=1

�
�̂ (1) (Xi ) � �̂ (0) (Xi ) + Wi

Yi � �̂ (1) (Xi )

ê(Xi )
� (1 � Wi )

Yi � �̂ (0) (Xi )

1� ê(Xi )

�

is consistent if either the ^� (w) (x) are consistent or ^e(x) is consistent.

� �̂ IPW , 1
n

P n
i=1

�
W i Yi
ê(Xi )

� (1� W i )Yi

1� ê(Xi )

�
: Treatment assignment� covariates

� �̂ OLS , 1
n

P n
i=1 (�̂ 1(Xi ) � �̂ 0(Xi )): Outcome � covariates

) Both sensitive to misspeci�cation. DR: combine ols + ipw of residuals

Rationale: makes group similar before extrapolation
X

i :W i =1

(ê� (0) (Xi ) � � (0) (Xi )) = ( X 1 � 
̂ T X 0)
| {z }
covariate balancing

(�̂ (0) � � (0) )
| {z }

extrapolation

+ noise term

where ^
 = (1 � ê(Xj )) � 1
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 = (1 � ê(Xj )) � 1

22



Doubly robust ATE estimation

Model Treatment on Covariatese(x) , P(Wi = 1 j Xi = x)
Model Outcome on Covariates� (w) (x) , E[Yi (w) j Xi = x]

Augmented IPW - Double Robust (DR)

�̂ AIPW , 1
n

P n
i=1

�
�̂ (1) (Xi ) � �̂ (0) (Xi ) + Wi

Yi � �̂ (1) (Xi )

ê(Xi )
� (1 � Wi )

Yi � �̂ (0) (Xi )

1� ê(Xi )

�

is consistent if either the ^� (w) (x) are consistent or ^e(x) is consistent.

Possibility to useany (machine learning) procedure such asrandom
forests, deep nets, etc. to estimate ^e(x) and �̂ (w) (x) without harming
the interpretability of the causal e�ect estimation.
Implemented in the R package grf.

Properties - Double Machine Learning (Chernozhukov et al., 2018)

If ê(x) and �̂ (w) (x) converge at the raten1=4 then
p

n (�̂ AIPW � � ) d���!
n!1

N (0; V � ), V � semiparametric e�cient variance.
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Pause: end of the crash course

What we have presented:

ˆ The notations and framework;

ˆ The di�erent type of data, RCT and observational data;

ˆ Key assumptions for RCT and observational data;

ˆ Estimator for the RCT;

ˆ 4 estimators for observational data.

Feel free to ask questions!
Next part is about generalizing a treatment e�ect from a RCT to a target
population.
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Joint analysis of experimental
and observational data



Leverage strength of RCT and observational data

RCT: high internal validity, low external validity.
Obs: high external validity, issue with confounding.
) Using both?

� Validate observational methods.

� Correcting confounding bias.

� Generalize the treatment e�ect on a target patient population.The
FDA has greenlighted the usage of the drug Ibrance to men with breast
cancer, though clinical trials were performed only on women. Reduce the
time to approve a drug for patients who could bene�t from it.

� Improve estimation of heterogeneous treatment e�ectsRCTs are
known to be under-powered for heterogeneous treatment e�ect. The
COVID-19 health crisis is an example of a case where a very rapid
response is needed. In the beginning, there are far more observational
data than clinical trials.
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Notations with the two data sources

� (X ; Y (0); Y (1); W ; S) drawn from a distributionP
� S binary indicator for the inclusion in the RCT (S = 1) or not ( S = 0). 3

� RCT drawn fromP(X ; Y (0); Y (1); W ; S j S = 1)
� Observational drawn fromP(X ; Y (0); Y (1); W ; S)

Cov. Treat Out(s)
S X1 X2 X3 W Y (0) Y (1)

rct 1 1 1.1 20 F 1 NA 1
rct 1 -6 45 F 0 1 NA
rct n 1 0 15 M 1 NA 0

Obs n + 1 0 : : : : : : : : : : : :
Obs 0 -2 52 M 0 1 NA
Obs 0 -1 35 M 1 NA 1
Obs n + m 0 -2 22 M 0 0 NA

Samples in RCT & observational data do not follow the same distribution
(covariate shift problem ). � 6= � 1 = E[Y (1) � Y (0) j S = 1] :

) Bridging the �ndings from an RCT to the target population and
combining both sources:generalizability , transportability , data
fusion4, data integration .
3Adaptation of notation for simplicity of �rst introduction.
4Bareinboim and Pearl (2016)
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Assumption for ATE identi�ability

Ignorability assumption on trial participation

f Y (0); Y (1)g ?? S j X

Trial allocation S is random conditionally on covariatesX
Measure enough covariates to capture dependence betweenS and outcomes

Sampling score - overlap assumption

� S(x) , P(Si = 1 j Xi = x) 8 x 2 X :

Assume overlap, i.e.� S(x) � c > 0; 8 x 2 X and some constantc.

Identi�cation formulae. � = E[Yi (1) � Yi (0)]

1. Regression formulation, using� w;1(x) = E [Y (w) j X = x; S = 1]
� = E [� 1;1(X ) � � 0;1(X )]

2. Reweighting formulation : � = E
h

f (X )
f (X jS=1) � 1(X ) j S = 1

i

27



Di�erence between conditional means

Di�erence between conditional means (DCM)

b� DCM =
1
m

n+ mX

i =1

(1 � Si ) ( b� 1;1(Xi ) � b� 0;1(Xi )) ;

� w;1(x) = E [Y j X = x; S = 1 ; W = w]

Covariates Treat Out
S X1 X2 X3 W Y

1 1 1.1 20 F 1 1
1 -6 45 F 0 1

n 1 0 15 M 1 0

n + 1 0 -1 35 M
n + 2 0 -2 52 M

0 : : :
n + m 0 -2 22 M

)

Covariates Treat Outcome(s)
S X1 X2 X3 W Y (0) Y (1)

1 1.1 20 F 1 NA 1
1 -6 45 F 0 1 NA
1 0 15 M 1 NA 0

0 -1 35 M �̂ 0; 1(X n+1 ) �̂ 1; 1(X n+1 )

0 -2 52 M �̂ 0; 1(X n+2 ) �̂ 1; 1(X n+2 )

0 : : : : : : : : : : : :
0 -2 22 M �̂ 0; 1(X n+ m) �̂ 1; 1(X n+ m)

� Fit two models (regression) of the outcome (Y ) on covariates (X )
among trial participants (S = 1) for treated and for control to get b� 1;1 & b� 0;1

� Apply these models to the covariates in the target pop , i.e., marginalize
over the covariate distribution of the target pop, gives the expected outcomes
� Compute the di�erences between the expected outcomeŝ� 1;1(�) - �̂ 0;1(�)

) When the model is correctly speci�ed the estimator is consistent. 28



Inverse probability of sampling weighting (IPSW)

IPSW estimator

b� =
1
m

nX

i =1

Yi

b� (Xi )

�
Wi

e1(Xi )
�

1 � Wi

1 � e1(Xi )

�
; (1)

b� is an estimate of the odds ratio of the indicator of being in the RCT,
and usuallye1(x) = 0 :5

� weighted di�erence of average outcomes between the treated and
control group in the trial.
� weights: the inverse of the estimated sampling score to account for the
shift of the covariate distribution from the RCT to the target population.

Ex: if proba to be in the trial when old is small, then up-weights the
individuals in the trial.

) Balance the di�erences between the two groups
) Consistent estimator of� as long asb� (Xi ) is consistent. 29



Calibration weights (Dong et al., 2020)

min
W = f ! i g

nX

i =1

! i log! i ; (2)

subject to ! i � 0; for all i ;
nX

i =1

! i = 1 ;
nX

i =1

! i g(Xi ) = eg; (the balancing constraint)

g(X ): a vector of functions ofX to be calibrated; e.g., the moments,
interactions, and non-linear transformations;eg = m� 1 P m+ n

i= n+1 g(Xi ) a
consistent estimator ofE [g(X )] from the obs. sample.

� minimizing the negative entropy (2) ensures that the empirical
distribution of weights close to uniform.
� the balancing constraint calibrates the covariate distribution of the
RCT sample to the target population in terms ofg(X ).
� optim: convex optimization with Lagrange multipliers.

b� CW =
nX

i =1

b! i f Wi Yi � (1 � Wi )Yi g:
30



Doubly robust ATE estimation

Model Sample on Covariates� S(x) , P(Si = 1 j Xi = x)
Model Outcome on Covariates� (w;1)(w) , E[Yi (w) j Xi = x; Si = 1]

Augmented IPSW - Double Robust (DR)

b� AIPSW =

P n
i=1 b� S(Xi ) � 1W i f Yi � b� 1; 1(Xi )g

P n
i=1 b� S(Xi ) � 1W i

�

P n
i=1 b� S(Xi ) � 1(1 � W i )f Yi � b� 0; 1(Xi )g

P n
i=1 b� S(Xi ) � 1(1 � W i )

+
1

m

m+ nX

i =1

(1 � Si ) f b� 1; 1(Xi ) � b� 0; 1(Xi )g :

is consistent and asymptotically normal if either the ^� w;1(X ) (w = 0 ; 1)
are consistent or ^� S(X ) is consistent.
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Experiments

Covariates Treat Outcome
S X1 X2 X3 X4 W Y

1 1 1.1 20 F 5 1 -166
1 -6 45 F 6 0 111

1000 1 0 15 M 12 1 -48
1001 0 : : :

0 -2 52 M 18
0 -1 35 M 1

50000 0 -2 22 M 32

� Sample of size 50000,Xi � N ((1; 1; 1; 1); I4).
� GenerateS: logit f � S(X )g = � 2:5 � 0:5X1 � 0:3X2 � 0:5X3 � 0:4X4:
� GenerateW : Wi � B (0:5).
� GenerateY (w):
Y (w) = � 100+27:4wX1 + X2 +13:7X3 +13:7+ X4 + � with � � N (0; 1):

The population ATE� = 27:4

The sample selection for the RCT (S = 1) is biased toward lower values
of X1 and consequently toward lower treatment e�ect.
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Simulations

Well-speci�ed model Es-

timated ATE when RCT

and/or outcome models

are well-speci�ed. Esti-

mators used being IPSW

(IPSW and IPSW.norm),

strati�cation, g-formula,

calibration weighting

(CW), and augmented

IPSW (AIPSW) over 100

simulations.

Other simulations are performed with model mis-speci�cations, stronger distributional

shift between RCT and observational data, etc.. The code is available on Gitlab
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Simulations - misspeci�cations

Model mispeci�cation sampling� j Xj ! e�
j Xj

Methods based on sampling score out/ on outome OK/ on both OK
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Application

Real data gathered: E�ect of acid tranexamic (TXA) on brain-injured
related (TBI) deaths

Randomized Controlled Trial
CRASH-3

ˆ 29 di�erent countries

ˆ 9202 patients

Concludes on positive e�ect of
TXA

Real World data
Traumabase

ˆ 23 French Trauma centers

ˆ 8270 patients

Concludes on no signi�cative e�ect
of TXA (Mayer et al., 2020)

Could the generalization help solving the apparent di�erence?
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Applications - Shift visualization

We talked about covariate shift, we do observe it on these data.

Figure 2: Distributional shift of Age between the Traumabase and the
CRASH-3 studies.
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