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Evidence based 
medicine 
The promise of big data

Source: Pierre Charles Alexandre Louis’s experiment on bloodletting (1835) 
 — Original research work is made available by the French National Library (BnF) 



A brief history of modern medical evidence: the ever increasing role of data and statistics
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bloodletting
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Register Office
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John Snow’s discovery on 
cholera

Janet Lane-Clayton pioneered 
the use of cohort studies and 

case control studies (benefit of 
breast feeding versus cow 

milk)

1912

Streptomycin trial for 
pulmonary tuberculosis

1948

So-called evidence based 
medicine’s era



Randomized Controlled Trials (RCTs) as the current gold standard
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e.g. 6.7% stroke

e.g. 11.1% stroke



Randomized Controlled Trials (RCTs) as the current gold standard
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Principle

Random split

Assign treatment

Assign control

Measure outcome 
in each group

e.g. 6.7% stroke

e.g. 11.1% stroke

In practice : the CRASH-3 trial investigating Tranexamic Acid effect on brain injured related death

Source: Screenshot from the Lancet (CRASH-3 main report)
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Random split

Assign treatment

Assign control

Measure outcome 
in each group

e.g. 6.7% stroke

e.g. 11.1% stroke

Short timeframe

Treatment’s compliance far from 
real world observance

Unrepresentativeness of the 
population

Limited sample size

Today’s focus!



Our motivating example: generalization of CRASH-3 findings to the Traumabase
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CRASH-3 

- Multi-centric RCT with 9000 individuals 
- Measured a positive effect on moderately 

injured patients

Traumabase 

- Large national French cohort with 30000 individuals 
- Could not conclude on a positive effect when 

adjusting on confounders

What would be the estimated effect of TXA if measured on the Traumabase’s population?



Our motivating example: generalization of CRASH-3 findings to the Traumabase
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CRASH-3 

- Multi-centric RCT with 9000 individuals 
- Measured a positive effect on moderately 

injured patients

Traumabase 

- Large national French cohort with 30000 individuals 
- Could not conclude on a positive effect when 

adjusting on confounders

Can the result of a large international trial — assessing the efficacy of Tranexamic Acid (TXA) on 
brain-injured death (TBI) — be generalized to the French population?



What did you mean by heterogeneity of treatment effect?
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Hypothetical drawing of the response model. 
Glasgow score reflects the severity of the brain trauma, the lower the score the higher the trauma. 



Toward formalization — the potential outcomes framework to encode causality
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For each individual i, consider each of the possible outcomes for treated Y(1) , and control Y(0) .
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For each individual i, consider each of the possible outcomes for treated Y(1) , and control Y(0) .

A Y(1) Y(0) YX
0 
0 
1 
0 
1

NA 
NA 
14 
NA 
7

3 
5 
NA 
8 
NA

3 
5 
14 
8 
7

F 
M 
M 
F 
F

1 
2 
1 
3 
2

binary treatment

Y is the observed 
outcome

characteristics



Toward formalization — the potential outcomes framework to encode causality

16

For each individual i, consider each of the possible outcomes for treated Y(1) , and control Y(0) .

A Y(1) Y(0) YX
0 
0 
1 
0 
1

NA 
NA 
14 
NA 
7

3 
5 
NA 
8 
NA

3 
5 
14 
8 
7

F 
M 
M 
F 
F

1 
2 
1 
3 
2

binary treatment

Y is the observed 
outcome

characteristics

In a RCT,
1
n1

n

∑
i=1

AiYi → 𝔼 [Y ∣ A = 1] = 𝔼 [Y(1)]



The potential outcomes framework for the generalization 
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Denoting, 

- A the binary treatment 
- X the covariates 
- Y the observed outcome

We now consider, 

- A trial of size n sampled from a 
population pR(X), 

- A data set of size m sampled 
from  pT(X) the target 
population of interest.



Generalizing clinical 
trial’s findings
When estimation depends on 
two data sets



Recalling what is done on a classical clinical randomized trial
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̂τHT,n =
1
n ∑

i∈Trial
( YiAi

π
−

Yi(1 − Ai)
1 − π ) Probability to receive 

treatment, usually 0.5

Horvitz-Thomson 
estimator



Recalling what is done on a classical clinical randomized trial
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̂τHT,n =
1
n ∑

i∈Trial
( YiAi

π
−

Yi(1 − Ai)
1 − π ) Probability to receive 

treatment, usually 0.5

Horvitz-Thomson 
estimator

Properties

𝔼 [ ̂τHT,n] = τ n Var [ ̂τHT,n] =
𝔼 [(Y(1))2]

π
+

𝔼 [(Y(0))2]
1 − π

− τ2 := VHT

Unbiased Finite sample variance



Enriching the trial data with the target sample data
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̂τIPSW,n,m =
1
n ∑

i∈Trial

̂pT,m(Xi)
̂pR,n(Xi) ( YiAi

π
−

Yi(1 − Ai)
1 − π )

Depends on n and m !

IPSW

Wished properties?

𝔼 [ ̂τIPSW,n] = τT
n Var [ ̂τIPSW,n,m] = ?

Unbiased

Same as single RCT



Generalization’s causal assumptions
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∀x ∈ 𝕏, ℙR(Y(1) − Y(0) ∣ X = x) = ℙT(Y(1) − Y(0) ∣ X = x)

supp(PT(X)) ⊂ supp(PR(X))

Transportability assumption

Positivity assumption

—> Needed covariates are shifted treatment effect modifiers

—> Each individuals in the target population has to be represented in the trial.



Our contributions

23

Assumption:  assume X is composed of categorical covariates — e.g. smoking status, gender, …

̂pR,n(x) :=
1
n ∑

i∈ℝ

1Xi=x



Our contributions
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Asymptotic results for IPSW estimator

lim
n,m→∞

min(n, m)Var [ ̂τn,m] = min(1,λ)(
Var [τ(X)]

λ
+ Vso)

lim
n,m→∞

m/n = λ ∈ [0,∞],Letting

Assumption:  assume X is composed of categorical covariates — e.g. smoking status, gender, …

̂pR,n(x) :=
1
n ∑

i∈ℝ

1Xi=x

Variance depends on two data samples sizes!



Impact of additional covariates: for the worse?
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-   Covariates needed: shifted covariates and treatment 
effect modifiers 

-  One may be tempted to add many covariates 

-    But what happen if adding shifted covariates that are 
not modulating treatment effect? e.g. gender?
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-   Covariates needed: shifted covariates and treatment 
effect modifiers 

-  One may be tempted to add many covariates 

-    But what happen if adding shifted covariates that are 
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-   Covariates needed: shifted covariates and treatment 
effect modifiers 

-  One may be tempted to add many covariates 

-    But what happen if adding shifted covariates that are 
not modulating treatment effect? e.g. gender?

lim
n→∞

n VarR [ ̂τT,n,m(X, V )] = ( ∑
v∈𝒱

pT(v)2

pR(v) ) lim
n→∞

n VarR [ ̂τT,n,m(X)]

Variance without genderInflation x



Impact of additional covariates: for the better?
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Adding a non-shifted, but treatment effect modifiers covariate, in the adjustment set improves precision
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Source: xkcd.com 



Risk ratio, odds 
ratio, risk 
difference
Which causal measure is 
easier to generalize?



A variety of causal measures

Clinical example from Cook and Sackett (1995) 
Randomized Controlled Trial (RCT), 
- Y the observed binary outcome (stroke after 5 

years) 
- A binary treatment assignment 
- X baseline covariates

31

RCT’s findings  
11.1% stroke in control, versus 6.7% in treated

Usually referring to an effect, is related to how 
one contrasts those two 

e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04



A variety of causal measures

Clinical example from Cook and Sackett (1995) 
Randomized Controlled Trial (RCT), 
- Y the observed binary outcome (stroke after 5 

years) 
- A binary treatment assignment 
- X baseline covariates

Count the non-stroke

τRR =
𝔼 [Y(1)]
𝔼 [Y(0)] τSR =

1 − 𝔼 [Y(1)]
1 − 𝔼 [Y(0)]

τRD = 𝔼 [Y(1)] − 𝔼 [Y(0)] τNNT = τ−1
RD

τOR =
𝔼[Y(1)]

1 − 𝔼[Y(1)] ( 𝔼[Y(0)]
1 − 𝔼[Y(0)] )

−1

Count the stroke

Risk Difference Number Needed to Treat

Odds Ratio

Note that for binary Y, 
E[Y(a)] = P(Y=1 | A=a)

32

RCT’s findings  
11.1% stroke in control, versus 6.7% in treated

Usually referring to an effect, is related to how 
one contrasts those two 

e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04



A variety of causal measures
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— leading to different impressions and heterogeneity patterns

Continuing the clinical example

👩⚕ ``Treated group has 0.6 times the risk of having a stroke outcome when 
compared with the placebo.” or` `The Number Needed to Treat is 22.” or 
``Effect is stronger on subgroup X=0 but not on the ratio scale.”

Computed from Cook & Sackett (1995)

Marginal  

effects

Conditional 
effects

X = 1 <-> high 
baseline risk

τ

τ(x)



Ranges of effects
Risk Difference (RD)
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Number Needed to Treat (NNT)

Risk Ratio (RR) Survival Ratio (SR) Odds Ratio (OR) Log-Odds Ratio (log-OR)

How to read plots



The age-old question of how to report effects
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`` We wish to decide whether we shall count the failures or the successes and 
whether we shall make relative or absolute comparisons” 

— Mindel C. Sheps, New England Journal of Medicine, in 1958
Source: Wikipedia

The choice of the measure is still actively discussed 

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 
2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 … 

— CONSORT guidelines recommend to report all of them



A desirable property: collapsibility
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ττ(x3)

i.e. population’s effect is equal to a weighted sum of local effects

A very famous example: the Simpson paradox

Toy example inspired from Greenland (1987).

Weighted sum

Marginal effect 
bigger than 
subgroups’ 

effects

📕 Discussed in Greenland, 1987; Hernàn et al. 

2011; Huitfeldt et al., 2019; Daniel et al., 2020; 
Didelez and Stensrud, 2022 and many others.

— Unfortunately, not all measures are collapsible



Collapsibility and formalism
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• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 

2. Collapsibility 

3. Logic-respecting

𝔼 [τ(X)] = τ

𝔼 [w(X, P(X, Y(0))) τ(X)] = τ, with w ≥ 0, and 𝔼 [w(X, P(X, Y(0)))] = 1

τ ∈ [min
x

(τ(x)), max
x

(τ(x))]

𝔼 [τRR(X)
𝔼 [Y(0) ∣ X]

𝔼 [Y(0)] ] = τRR

e.g RR is collapsible, with.
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• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 

2. Collapsibility 

3. Logic-respecting

𝔼 [τ(X)] = τ

𝔼 [w(X, P(X, Y(0))) τ(X)] = τ, with w ≥ 0, and 𝔼 [w(X, P(X, Y(0)))] = 1

τ ∈ [min
x

(τ(x)), max
x

(τ(x))]

𝔼 [τRR(X)
𝔼 [Y(0) ∣ X]

𝔼 [Y(0)] ] = τRR

e.g RR is collapsible, with.



Through the lens of non parametric generative models
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Expected response

E[Y
(1) |

 X =
 x]

E[Y(0) | 
X = x

]

X

Y 

For Y continuous,

Baseline

(*) This only assumes that conditional expected responses are 
defined for every x
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Expected response

E[Y
(1) |

 X =
 x]

E[Y(0) | 
X = x

]

X

Y 

For Y continuous,

Baseline

(*) This only assumes that conditional expected responses are 
defined for every x

Lemma*  

There exist two functions b(.) and m(.) such that,

Additivity

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

Linking generative functions with measures

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

τRD(x) = m(x)

τRR(x) = 1 + m(x)/b(x) Entanglement 

No entanglement

m(x)



Through the lens of non parametric generative models
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Probability of event if treated

P[Y(1) = 1 | X = x]

P[Y(0) =
 1 | X

 = x]

For Y binary,

Baseline

Lemma  

There exist two functions b(.) and m(.) such that,

Additivity

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

1

0

Adapted Lemma 

There exist two functions b(.) and m(.) such that,

ln ( ℙ(Y(a) = 1 ∣ X)
ℙ(Y(a) = 0 ∣ X) ) = b(X) + a m(X)X

Y 



The example of the Russian roulette 

42Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Harmful



The example of the Russian roulette 

43Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Lemma  

There exist two functions b(.) and m(.) such that,

ℙ [Y(a) = 1 ∣ X] = b(X) + a (1 − b (X)) m(X)

Simple additivity is not possible anymore

τRD(x) = (1 − b(x))m(x)

τSR(x) = 1 − m(x)

Linking generative functions with measures

Entanglement 

No entanglement

Harmful



Extension to all effect types (harmful and beneficial)

mg(x) := ℙ [Y(1) = 0 ∣ Y(0) = 1, X = x] and mb(x) := ℙ [Y(1) = 1 ∣ Y(0) = 0, X = x],

Introducing,

ℙ [Y(a) = 1 ∣ X = x] = b(x) + a ((1 − b (x)) mb (x) − b (x) mg (x)), where b(x) := p0(x) .

Considering a binary outcome, assume that 

allows to have,

∀x ∈ 𝕏, ∀a ∈ {0,1}, 0 < pa(x) < 1, where pa(x) := ℙ [Y(a) = 1 ∣ X = x] Assumptions

More events Less events44



Generalizability
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i.e. transport trial findings to a target population ̂τRCT ⟶ ̂τTarget

Our real-world example

What would be the effect if individuals where sampled in target population?



Generalizability
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i.e. transport trial findings to a target population ̂τRCT ⟶ ̂τTarget

A real-world example

State-of-the-art

- Ideas present in epidemiological books (Rothman & Greenland, 2000) 
- Foundational work from Stuart et al. 2010 and Pearl & Barenboim 2011 
- Currently flourishing field with IPW, G-formula, and doubly-robust estimators

Focus on 
generalizing the 

difference



Two methods, two assumptions
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All shifted prognostic covariates All shifted treatment effect modifiersUnformal

Assumptions 
for RD {Y(0), Y(1)} ⊥⊥ S |X Y(1) − Y(0) ⊥⊥ S |X

S is the indicator of 
population’s membership

— Depending on the assumptions, either conditional outcome or local treatment effect can 
be generalised

Identification 𝔼T [Y(a)] = 𝔼T [𝔼R [Y(a) ∣ X]] τT = 𝔼 [w(X, Y(0))τR(X)]
Possible only if 

collapsible!

Less covariates if homogeneity

Generalizing Conditional potential outcomes Local effects



Generalizing local effect, for a binary Y and a beneficial effect 
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τRR(x) = 1 − mg(x)
Thanks to the generative model, 

only depends on covariates in m(X)

𝔼 [τRR(X)
𝔼 [Y(0) ∣ X]

𝔼 [Y(0)] ] = τRR

i.e. reducing number of events

Estimate using target 
sample

Estimate using 
trial sample



A toy simulation
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Introducing heterogeneities in the Russian roulette 

- Probability to die varies 
- Stressed people can die from a heart attack 
- Executioner more merciful when facing women

P[Y = 1 | X] = b(X1->3) + (1- b(X1->3) m(X2->3) 

X1 : lifestyle general level 

X2 : stress 

 X3 : gender (not shifted)

— Local SR can be generalised using only stress. All others measures requires lifestyle and 
stress.



Conclusion
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1. A collapsible measure is needed to generalize local effects, 

2. Some measures disentangle the baseline risk from the effect — and this depends on the 
outcome nature  

• If Y is continuous — Risk Difference 
• If Y is binary — Risk Ratio or Survival Ratio depending on the direction of effect  

3. Generalization can be done under different assumptions, with  
• more or less baseline covariates 
• access to Y(0) in the target population or not

@BenedicteColnet

Thank you for listening!  
Any questions?

ArXiv

- Many thanks to Anders Huitfeldt, whose work 
inspired us! 
- See Andrew Gelman’s blog. Feel free to react!



Common properties discussed
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∀x1, x2 ∈ 𝕏, τ(x1) = τ(x2) = τHomogeneity

∃x1, x2 ∈ 𝕏, τ(x1) ≠ τ(x2)Heterogeneity

⚠ No non-zero effect can be 
homogeneous on all metrics

How the effect changes on sub-groups

How the effect changes with labelling

e.g. Odds Ratio is symmetric, while Risk Ratio is not

X

Y 

A=1

A=0

A=0
A=1



The promise of detailed and larger observational or real world data sets
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Estimate the efficacy in real-world conditions 

- Relying on one data set such as Electronic 
Health Record or hospital data base 

- Emulate a target trial leveraging observed 
confounding variables 

- Solving both representativity and effective 
treatment given 

🎁 Large sample enabling estimation of 
stratified effects 



The promise of detailed and larger observational or real world data sets

53

Estimate the efficacy in real-world conditions 

- Relying on one data set such as Electronic 
Health Record or hospital data base 
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- Solving both representativity and effective 
treatment given 

🎁 Large sample enabling estimation of 
stratified effects 



The limits of detailed and larger observational or real world data sets
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Fear of unobserved confounding
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Fear of unobserved confounding Idea — Using both data sets! 

1. Using RCT to check all confounders are observed   

2. Using observational data to improve trial’s 
representativity                                                        

— Generalizing or transporting clinical trial findings 
toward a new target population

— Grounding observational analysis
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Fear of unobserved confounding Idea — Using both data sets! 

1. Using RCT to check all confounders are observed   

2. Using observational data to improve trial’s 
representativity                                                        

— Generalizing or transporting clinical trial findings 
toward a new target population

— Grounding observational analysis

Today’s focus!


