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A rather old question

2
Source: Wikipedia



James Lind’s experiment formalization

This slide is an introduction to the Potential Outcome framework.

Assume your goal is to measure the effect of a drug on an outcome.

Using the potential outcome
framework (Neyman, 1923), we
denote

• A the treatment,

• X the covariates,

• Y the observed outcome.

For each individual i, consider each
of the possible outcomes, as if
we consider counterfactual worlds,
Y(1)
i (treated), and Y(0)

i (untreated).

Question: Y(1)
i

?
= Y(0)

i
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Data at hand

Individual causal effect of the treatment: ∆i = Yi(1)− Yi(0)

Problem: ∆i never observed (only observe one outcome/indiv). Causal
inference as a missing value problem?

Covariates Treatment Outcome(s) Observed outcome
X1 X2 X3 A Y(0) Y(1) Y(A)
1.1 20 F 1 NA T T
-6 45 F 0 F NA F
0 15 M 1 NA F F

. . . . . . . . . . . . . . .

-2 52 M 0 T NA T

Two sources of randomness in this data set:

• Treatment assignment allocation,

• Sampling individuals in a wider population.
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Randomized Controlled Trial: an empirical trick to measure the causal effect

Statistical trick: Inference on potential outcomes’ distributions.

E
[
Y(1)
]

?
= E

[
Y(0)
]
.

More precisely people often target the so-called Average Treatment Effect
(ATE),

τ = E
[
Y(1) − Y(0)

]
.

Running a randomized controlled trial corresponds to:
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Randomized Controlled Trial: an empirical trick to measure the causal effect

Statistical trick: Inference on potential outcomes’ distributions.

E
[
Y(1)
]

?
= E

[
Y(0)
]
.

More precisely people often target the so-called Average Treatment Effect
(ATE),

τ = E
[
Y(1) − Y(0)

]
.

Running a randomized controlled trial is a way to ensure,

Assumption - Treatment assignment exchangeability

∀i, Y(1)
i , Y(0)

i ⊥⊥ Ai,

Treated and control groups differ only with respect to treatment allocation.

Another assumption we will assume today is the SUTVA assumption: no
interference and consistency Yi(A1, A2, . . . , An) = Yi(Ai).
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Statistical properties of the difference-in-means

Suppose we have access to n independent and identically distributed
examples labeled i = 1, . . . ,n, a response Yi ∈ Y , and a binary treatment
indicator Ai ∈ {0, 1} assigned randomly.

Definition - Difference in means

τ̂D M =
1
n1

∑
Ai=1

Yi −
1
n0

∑
Ai=0

Yi ,where na = |{i : Ai = a}| ,

Proposition - Asymptotically normal estimator
The difference-in-means estimator is asymptotically normal,

√
n (τ̂D M − τ)

d→ N
(
0, σ2D M

)
,

where σ2D M = 1
n0

Var [Y(0)] + 1
n1
Var [Y(1)].

Bonus: τ̂D M is an unbiased estimator.
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Example of Tranexamic Acid (TXA) on brain injury related death

8
Source: www.thelancet.com Vol 394, 2019



Non-randomized data

Non-experimental studies – called Observational data – are often
confounded, meaning that treated patients are not exactly like untreated
ones.

0.000

0.005

0.010

0.015

50 100 150 200 250
Systolic blood pressure

TXA

control

treated

In other words, the conditional independence does no longer hold,

E [Y | A = a] 6= E[Y(a)]

9
Source: Traumabase data, own plot.



Motivation

Question from cliniciansa

awww.traumabase.eu

Can we estimate the average effect of Tranexamic Acid (TXA) on brain-injured
death (TBI) on the French population in trauma centers?

Data sources and evidence at hand:

CRASH3

• Multi-centric RCT over 29 counties,

• ∼ 9 000 individuals,

• High internal validity

• Measured a positive effect of TXA on
moderate injured patients

Traumabase

• Observational sample,

• ∼ 30 000 individuals,

• High external validity

• Observational analysis can not
reject the null hypothesis of no
effect (and pushing toward negative
effect).

Is there a paradox?
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Possible explanations

• Treatment and outcome are not exactly the same3 ,

• Traumabase’s analysis suffers from unobserved confounding,

• Populations are different.

Could we generalize the evidence from the trial to the Traumabase?
Would a trial directly conducted on the Traumabase’s individuals had found the same

effect?

3Sara Lodi & Miguel A Hernán et al. (2019). Effect Estimates in Randomized Trials and Observational Studies:
Comparing Apples With Apples. Am J Epidemiol.
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This topic seems to be a burning question

Within the last 7 days at Stanford:

• Last Thursday, in the Biostatistic seminar, talk about eligibility criteria in
oncology, distributional shifts, and validity of trials,

• Yesterday in stat seminar ”Is empirical medical research doomed?
Generalizability of predictions and treatment effect estimates”,

This question is found under many names in literature,

• Generalization4 ,

• Transportability, data fusion, or recoverability5 ,

• External validity,

• Standardization6 ,

• . . .

4Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target
Populations: The ACTG 320 Trial, American Journal of Epidemiology
5Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
6Rothman & Greenland, Modern Epidemiology

12



This topic seems to be a burning question

Within the last 7 days at Stanford:

• Last Thursday, in the Biostatistic seminar, talk about eligibility criteria in
oncology, distributional shifts, and validity of trials,

• Yesterday in stat seminar ”Is empirical medical research doomed?
Generalizability of predictions and treatment effect estimates”,

This question is found under many names in literature,

• Generalization4 ,

• Transportability, data fusion, or recoverability5 ,

• External validity,

• Standardization6 ,

• . . .

4Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target
Populations: The ACTG 320 Trial, American Journal of Epidemiology
5Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
6Rothman & Greenland, Modern Epidemiology

12



Combining data for generalizability or
transportability



Context

Consider that a policy maker has at hand:

• an already conducted trial about a treatment or policy (→ τ̂1),

• and a sample of the target population of interest (τ̂?).
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Notations

Notations
Using the potential outcome framework (Neyman, 1923), we denote

• A the treatment,
• X the covariates,
• Y the observed outcome,
• S trial selection or eligibility.

Identical to the classical framework

Set S X1 X2 X3 A Y(0) Y(1)
1 R 1 1.1 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n− 1 R 1 -6 45 8.3 0 26.3 ?
n R 1 0 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA
n + 2 O ?(1) -1 35 2.4 NA NA NA
. . . O ?(0) . . . NA NA NA
n + m O ?(1) -2 22 3.4 NA NA NA

Covariates distribution not the
same in the RCT & target pop:

fX|S=1 6= fX

⇒ τ1 = E[Y(1)− Y(0)|S = 1]︸ ︷︷ ︸
ATE in the RCT

6= E[Y(1)− Y(0)] = τ︸ ︷︷ ︸
Target ATE

We consider a non-nested design.
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Generalization’s causal assumptions.

Ignorability on trial participation

{Y(0), Y(1)} ⊥ S | X

• Transportability7 of the CATE =⇒ E [Y(1) − Y(0) | X = x, S = 1]︸ ︷︷ ︸
:=τ1(X)

= E [Y(1) − Y(0) | X = x]︸ ︷︷ ︸
:=τ(X)

,

• Corresponding to shifted treatment effect modifier.

Sampling score overlap

P(Si = 1 | Xi = x) ∀ x ∈ X .

Assume overlap, i.e. P(Si = 1 | Xi = x) ≥ c > 0, ∀ x ∈ X and some constant c.

• Every individuals in the target population could have been recruited,

• Similar to ATT or ATC assumptions (asymetric).
7Depend on the treatment effect metric
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Reweighting

Identifiability

τ = E
[

f (X)
f (X | S = 1)

(
AY
e1(X)

− (1− A)Y
1− e1(X)

)
| S = 1

]
,

where e1(X) = P(A = 1 | X, S = 1).

Intuition

17



Outcome modeling

Identifiability

τ = E

E [Y(1) | X, A = 1, S = 1]︸ ︷︷ ︸
:=µ1(X)

−E [Y(0) | X, A = 0, S = 1]︸ ︷︷ ︸
:=µ0(X)

 ,

Intuition

18



Estimators and consistency



Inverse probability of sampling weighting (IPSW)

Definition - Stuart et al. (2011); Buchanan et al. (2018)
The IPSW estimator is denoted τ̂IPSW,n,m , and defined as

τ̂IPSW,n,m =
1
n

n∑
i=1

n
m

Yi
α̂n,m(Xi)

(
Ai

e1(Xi)
− 1− Ai
1− e1(Xi)

)
,

where α̂n,m is an estimate of the odd ratio of the indicatrix of being in the RCT:

Sampling bias or two populations point of view?

Odds α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)
P(i ∈ O | ∃i ∈ R ∪O, Xi = x)

=
P(i ∈ R)

P(i ∈ O)︸ ︷︷ ︸
∼ n

m

×
P(Xi = x | i ∈ R)

P(Xi = x | i ∈ O)︸ ︷︷ ︸
f (x|S=1)
f (x) =

P(S=1)
P(S=1|X=x)

where α(.) is the odds ratio of being in the RCT versus observational data conditioned
to the covariates.

19



IPSW consistency

IPSW nuisance parameters consistency’s assumption

• supx∈X | n
mα̂n,m(x) −

fX(x)
fX|S=1(x)

| = εn,m
a.s.−→ 0 , when n,m → ∞,

• for all n,m large enough E[ε2n,m] exists and E[ε2n,m]
a.s.−→ 0 , when n,m → ∞.

Theorem - IPSW consistency and asymptotic normality
Under causal and consistency assumption, τ̂IPSW,n,m converges toward τ in L1 norm,

τ̂IPSW,n,m
L1−→

n,m→∞
τ.

Providing that the potential outcomes are square integrable,
√
n (τ̂IPSW,n,m − τ)

d→ N (0, VIPSW) ,

where

VIPSW =
1
n

E

( fX(x)
fX|S=1(x)

)2(
(Y(0))2

1− e(X)
+

(Y(1))2

e(X)

)
| S = 1

− τ 2

 .

20



Outcome regression (G-formula)

Definition
The G-formula is denoted τ̂G,n,m , and defined as

τ̂G,n,m =
1
m

n+m∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) ,

where µ̂a,n(Xi) is an estimator of µa(Xi) obtained on the RCT sample.

1. Consider RCT data 2. Estimate µ̂a(.) 3. Marginalize

21



G-formula consistency

G-formula nuisance parameters consistency’s assumption
Denoting µ̂0,n and µ̂1,n estimators of µ0 and µ1 respectively, and Dn the RCT sample,

(H1-G) For a ∈ {0, 1}, E [|µ̂a,n(X)− µa(X)| | Dn]
p→ 0 when n → ∞,

(H2-G) For a ∈ {0, 1}, there exist C1,N1 so that for all n > N1 , almost surely,
E[µ̂2a,n(X) | Dn] 6 C1 .

Theorem - G-formula consistency and asymptotic normality
Under causal and consistency assumption, τ̂G,n,m converges toward τ in L1 norm,

τ̂G,n,m
L1−→

n,m→∞
τ.
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Augmented IPSW - AIPSW

Definition
The AIPSW estimator is denoted τ̂AIPSW,n,m , and defined as

τ̂AIPSW,n,m =
1
n

n∑
i=1

n
m α̂n,m(Xi)

[
Ai (Yi − µ̂1,n(Xi))

e1(Xi)
− (1− Ai) (Yi − µ̂0,n(Xi))

1− e1(Xi)

]

+
1
m

m+n∑
i=n+1

(µ̂1,n(Xi)− µ̂0,n(Xi)) .

On-working consistency proof,

• Require surface-response cross-fitting estimation,

• Asymptotic normality achieved under sufficient convergence rates,

• Probable asymptotic variance being:

VAIPW = E

[(
f (X | S = 1)

f (X)

)2( (Y(1)− µ1(X))2

e(X)
+

(Y(0)− µ0(X))2

1− e(X)

)
| S = 1

]
+Var[τ(X)].
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Toward the application



Covariate selection in causal inference

With my advisors and collaborators we currently apply the Delphi method.

Pre-hospital (and before treatment)

Intra-hospital (and after treatment)

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs

NAs
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Covariate selection in generalization8

Structural causal model representing treatment, outcome, inclusion criteria with S
and other predictors of outcome.

Selecting covariates in any application with a causal question is a challenge for:

• Identification,

• Statistical efficiency.

=⇒ ongoing work...

8and a SCM comment

25
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N.B.: To find X really is a tricky task!

26
Source: xkcd.com/2560/



On the Traumabase

Comparison with trials and observational data results910

Issues:

• Heterogeneous point estimates,

• (Very) High variance,

• Heterogeneous missing values patterns.

9MIA = Missing Incorporated in Attributes (MIA, Twala et al. 2008; implemented in grf); EM, Jiang et al. (2018)
10Mayer et al. (2020) Doubly Robust Treatment Effect Estimation with Missing Attributes. Annals of Applied
Statistics.
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Applications with simulated data

Additional estimators are represented in these simulations, namely CW and ACW. See Yang et al. (2020) Improving

trial generalizability using observational studies, Biometrics.
28



Sensitivity analysis



What if a covariate is missing / not observed?

Set S X1 X2 X3 A Y(0) Y(1)
1 R 1 NA NA 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n− 1 R 1 NA NA 8.3 0 26.3 ?
n R 1 NA NA 6.2 1 ? 23.5

n + 1 O ?(0) NA 52 NA NA NA NA
n + 2 O ?(1) NA 35 NA NA NA NA
. . . O ?(0) NA . . . NA NA NA
n + m O ?(1) NA 22 NA NA NA NA

X1 totally missing, while X2, X3
are partially observed.

X = Xmis ∪ Xobs

{Y(1), Y(0)} 6⊥ S | Xobs

Is there a way to assess how dramatic the situation is?

• Andrews and Oster (2019) consider a totally unobserved covariate;

• Nguyen et al. (2018) study a missing covariate in observational;

• Practitioners sometimes rely on imputation, see Lesko et al. (2016);

• Pearl and Bareinboim (2011) propose a proxy (though not in the generalization set-up);

• Nie et al. (2021) considers a totally unobserved covariate with an approach inspired from
Rosenbaum.
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Sensitivity analysis in a nutshell

Source: YouTube’s screenshot.

How strong should you push the man before he falls?

30



Generalization’s case and model chosen

Intuition
A poorly shifted missing covariate and/or a weak treatment effect missing
covariate will lead to a small bias.

Assumption on the generative model
Assume that X, Y(0), Y(1) ∈ Rp+2 , along with assuming there exist δ ∈ Rp , σ ∈ R+ , any
function g ∈ L2(X → R) such that:

Y = g(X) + A〈X, δ〉+ ε

= g(X) + A (〈Xobs, δobs〉+ 〈Xmis, δmis〉) + ε

where ε ∼ N
(
0, σ2

)
,E[ε | X] = 0.

Is it a strong assumption?
When assuming Y(0), Y(1) ∈ Rp+2 the treatment is automatically additively separable,

Y(A) = g(X) + A τ(X) + ε.

Note that if τ(X) is a constant, then τ1 = τ .
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Y = g(X) + A〈X, δ〉+ ε

= g(X) + A (〈Xobs, δobs〉+ 〈Xmis, δmis〉) + ε

where ε ∼ N
(
0, σ2

)
,E[ε | X] = 0.

Is it a strong assumption?
When assuming Y(0), Y(1) ∈ Rp+2 the treatment is automatically additively separable,

Y(A) = g(X) + A τ(X) + ε.

Note that if τ(X) is a constant, then τ1 = τ .
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Transportability of covariates relationship

Assumption on covariates
The distribution of X is Gaussian, that is, X ∼ N (µ,Σ), and transportability
of Σ is true, that is, X | S = 1 ∼ N (µRCT ,Σ).

• Relation between covariates are preserved in the sources, while the expectancy
can be different explaining the bias,

• Allows to prevent from assuming independence.

The plausibility of this assumption can be partially-assessed through a statistical test on

Σobs,obs for example Box’s M test (Box, 1949), supported with vizualizations (Friendly and

Sigal, 2020)a .

aThis part will be illustrated on the application.

32



Asymptotic bias

Theorem
Assume that the partially linear generative model holds, along with the
transportability of covariates relationship. Let B be the following quantity:

B =
∑
j∈mis

δj

(
E[Xj]− E[Xj | S = 1]− Σj,obsΣ

−1
obs,obs(E[Xobs]− E[Xobs | S = 1])

)
,

Consider a procedure τ̂n,m that estimates τ with no asymptotic bias. Let τ̂n,m,obs be
the same procedure but trained on observed data only, then

τ − lim
n,m→∞

E[τ̂n,m,obs] = B.

where Σobs,obs is the sub matrix of Σ corresponding to observed index rows and columns, and
Σj,obs is the row j with column corresponding to observed index of Σ,

Σ =

(
Σmis,mis Σmis,obs
Σmis,obs Σobs,obs

)
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Toward sensitivity analysis

”Translating expert judgments into a bias.”

Assume the covariate is missing in the RCT

B = δmis︸︷︷︸
Xmis ’s strength

E[Xmis]− E[Xmis | S = 1]︸ ︷︷ ︸
Shift of Xmis: ∆m

−Σmis,obsΣ
−1
obs,obs(E[Xobs]− E[Xobs | S = 1])︸ ︷︷ ︸

Can be estimated from the data


The sensitivity parameters are from two natures:

• δmis
CATE coefficient ∼ Treatment effect modifier’s strength
=⇒ Complicated to translate,

• E[Xmis]− E[Xmis | S = 1]
Covariate shift’s strength
=⇒ Straightforward to translate.
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Semi synthetic simulation

Using the data from the Tennessee Student/Teacher Achievement Ratio
(STAR) study (Finn and Achilles, 1990).

We generate a biased RCT sample based on covariate g1surban and a
representative sample.

STAR Trial ~ Ground truth

ATE ~ 12.8

Almost 5000 children randomized

Fair sampling
m = 500

Biased sampling
n = 563 and ATE1 ~ 0

g1surban

35



Semi synthetic simulation - Generalization with missing covariate

Bias induced is around 7 points when omitting g1surban.

Can the sensitivity analysis estimates the bias when g1surban is missing in
the observational data but not the RCT?
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Semi synthetic simulation - Sensitivity analysis

• ∆m can be proposed by domain expert (interpretable quantity, here the shift in children
proportion leaving in suburbs versus city center),

• To estimate δmis :

• Learn a model on the observational data,
• Impute Xmis in the RCT,
• Estimate δmis with a Robinson procedure.

Set S X1 X2 X3 A Y(0) Y(1)
1 R 1 NA 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n− 1 R 1 NA 45 8.3 0 26.3 ?
n R 1 NA 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA
n + 2 O ?(1) -1 35 2.4 NA NA NA
. . . O ?(0) . . . NA NA NA
n + m O ?(1) -2 22 3.4 NA NA NA
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Semi synthetic simulation - Sensitivity analysis

• ∆m can be proposed by domain expert (interpretable quantity, here the shift in children
proportion leaving in suburbs versus city center),

• To estimate δmis :
• Learn a model on the observational data,
• Impute Xmis in the RCT,
• Estimate δmis with a Robinson procedure.

=⇒ then plot a sensitivity map!
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Other results - Sketches

Linear imputation?

• Assuming the true linear relation
between Xmis as a function of Xobs , which
leads to the optimal imputation X̂mis ,

• and denoting the oracle estimator
τ̂∞,∞,imp aware of these linear model
imputation,

Then,

E[τ̂∞,∞,imp] − τ = lim
n,m→∞

E[τ̂n,m,obs] − τ

Relying on a proxy?

Assume that Xmis ⊥⊥ Xobs , and that there exist a
proxy variable Xprox such that,

Xprox = Xmis + η

where E[η] = 0, Var[η] = σ2prox , and Cov
(
η, Xmis

)
= 0,

=⇒ B = δmis ∆m

(
1−

σ2mis
σ2mis + σ2prox

)
,

where ∆mis = E[Xmis] − E[Xmis | S = 1]
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Conclusion, open questions & remarks

• This method relies on two key assumptions
=⇒ CATE linearity & Σ transportability,

• Currently applying generalization to other data,
=⇒ Confront statistical assumptions with reality
=⇒ Quantify with several trials the effective external validity bias

• Working on covariate selection and variance
=⇒ Extensions of Lunceford and Davidian (2004)
=⇒ How non-parametric estimation affects convergence?

• Which covariates for generalization?
heterogeneities depends on the causal scale chosen
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Binary outcome and heterogeneities?

• Physicians usually face binary outcome and are interested in ratio,

• Treatment effect heterogeneity has different meaning depending
whether people are interested in the ratio, absolute difference, else.

Sensitivity analysis transposed for binary outcome could be,

ln

(
P(Y(a) = 1 | X)
P(Y(a) = 0 | X)

)
= f (X) + a τ(X),

such that,

τlog-OR := E

[
ln

(
P(Y(1) = 1 | X)
P(Y(1) = 0 | X)

(
P(Y(0) = 1 | X)
P(Y(0) = 0 | X)

)−1)]
= E [τ(X)] =

p∑
j=1

βjE [Xj] .
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DINA11 on CRASH3 data

Zijun’s work could be applied in this situation, targeting natural parameters.

Covariates β̂

Age 0.022
Glasgow -0.05

Time to treatment 0.05

Many questions:

• Is there a better causal measure for RCT’s generalizability?

• How different are the necessary sets to transport a difference versus a
ratio?

11Zijun Gao & Trevor Hastie, Estimating Heterogeneous Treatment Effects for General Responses
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Thank you very much for your attention!!
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When covariate is partially observed in RCT

τ = E[Y(1)]− E[Y(0)]

= E[g(X) +W 〈X, δ〉 | W = 1]− E[g(X) +W 〈X, δ〉 | W = 0]

= 〈δ,E[X]〉 = 〈δobs,E [Xobs]〉 + 〈δmis, E [Xmis]︸ ︷︷ ︸
Unknown

〉

Extension of (Nguyen et al., 2017): E [Y | A, X] = g(X)︸︷︷︸
non-linear

+ A 〈δ, X〉

• Define range for plausible E[Xmis] values
• Estimate δ with Robinson procedure (residuals on residuals) on the RCT 12 13 that
is:

• Estimate m(x) = E[Y | X = x, S = 1] with non parametric regression,
• Define transformed features Ỹ = Y − m̂n(X) and Z̃ = (W − e1(X))X,
• Estimate δ̂ with OLS regression: Ỹ ∼ Z̃.

• Estimate E[Xobs] on the observational dataset
• Compute all possible bias for range of E[Xmis] and return austen plot

12Robinson, P. 1988, Root- N-Consistent Semiparametric Regression, Econometrica
13Nie, X & Wager, S. 2020, Quasi-Oracle Estimation of Heterogeneous Treatment, Biometrika



Historical background

In fact, the fear of missing covariate or missing confounder is a central issue
in causal inference.

Several methods have been developed so far including:

• Sensitivity analysis,
A well-known example dating back from Cornfield et al. (1959), followed by
Rosenbaum et al. (1983); Imbens (2003) and more recently Franks et al. (2019);
Veitch and Zaveri (2020); Cinelli and Pearl (2020)

• Instrumental variables,
For example Angrist and Pischke (2008)

• Experimental grounding,
For example Kallus et al. (2018)



Smoking and lung cancer14

Formally, suppose that a true causal agent exist, for example hormone producer with a specific
gene, and this is denoted B. If people have B, then their disease rate is r1 . If not, their disease rate
is r2 (and we suppose a lower prevalence).

But instead of B, we observe A, for example the
smoking status. Suppose now that, p(B | A) = p1 and p(B | Ā) = p2 , such that the presence of B is
correlated with A, so p1 > p2 . In practice, when observing A, then an apparent rate of disease is
observed in association. We denote RA this rate, and we can write is as p1r1 + (1− p1) r2 = RA .

Because RA > RĀ , and doing a bit of computation gives …

p1
p2

=
RA
RĀ

+
r2
p2r1

(RA
RĀ

(1− p2) − (1− p1)
)

.

Because p1 > p2 and RA > RĀ , the third term is positive, therefore, RARĀ
<

p1
p2
.

If cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer (i.e.
RA
RĀ

= 9), and this is not because cigarette smoke is a causal agent, but only because cigarette

smokers produce hormone X, then the proportion of hormone-X producers among cigarette

smokers must be at least 9 times greater than nonsmokers (i.e. p1
p2

> 9). – Cornfield, 1956

14This derivations were inspired from reprint of the original discussion (Greenhouse, 2009;
Cornfield et al., 2009).
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Because RA > RĀ , and doing a bit of computation gives …

p1
p2

=
RA
RĀ
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