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Current practice: Randomized Controlled Trials (RCTs for short)

A longstanding presence of RCTs . . . now being the gold-standard

For e.g. in the 16th century a cross-over trial has
been documented about rhubarb’s effect. Source:
The Conversation - Wellcome Collection, CC BY Recently approved drugs by the Food and Drug Administration (FDA), all with their corresponding

RCT snapshot and information. Source: www.fda.gov
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But, the limited scope of RCTs is increasingly under scrutiny

• Short timeframe,
• unrealistic real-world compliance,

• limited sample size,
• unrepresentative sample.

Can the result of a large international trial – assessing the efficacy of Tranexamic Acid (TXA) on brain-injured
death (TBI) – be generalized to the French population?

Source: CRASH3 data trial and Traumabase cohort data comparing patients suffering from Traumatic Brain Injuries, and in particular their Glasgow
score (severity of the trauma).
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Introduction to the notations

Using the potential outcome framework1 , we denote

• A the treatment,

• X the covariates,

• Y the observed outcome.

Two data sources:
• A trial of size n with pR (x) the probability of
observing individual with X = x,

• A sample of the target population of interest –
for e.g. a national cohort
(resp. m and pT (x)).

1Y(a)i is the potential outcome, would the individual i have received treatment a. (Neyman, 1923)
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What if we only use the trial to estimate the Average Treatment Effect (ATE)?

Compute ATE averaging over the trial sample:

τ̂HT,n =
1
n
∑
i∈R

(
YiAi
π

−
Yi(1− Ai)
1− π

)
,

• where π is the probability to receive treatment in the trial (usually 0.5),
• Unbiased and consistent estimator of the average effect of treatment on population PR .

But, because distributions are different between the trial and the target population,
pR(x) 6= pT(x) ⇒ τR := ER[Y(1) − Y(0)]︸ ︷︷ ︸

ATE in the RCT

6= ET[Y(1) − Y(0)] := τ︸ ︷︷ ︸
Target ATE

Re-weighting the trial’s data?

τ̂IPSW :=
1
n
∑
i∈R

w(Xi)
(
YiAi
π

−
Yi(1− Ai)
1− π

)
︸ ︷︷ ︸

Horvitz-Thomson.

=⇒ Inverse Propensity Sampling Weighting (IPSW) - Stuart et al. 2010.
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Generalization’s causal assumptions.

Re-weight, so that the trial follows the target sample’s distribution,

w(X) :=
pT(X)
pR(X)

.

Which assumptions?

Transportability

∀x ∈ X, PR(Y(1) − Y(0) | X = x) = PT(Y(1) − Y(0) | X = x).

i.e. Needed covariates to re-weight correspond to shifted treatment effect modifier covariates (along the absolute scale).

Support inclusion

supp(PT(X)) ⊂ supp(PR(X))

i.e. Each individuals in the target population has to be represented in the trial.
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State-of-the-art and open practical questions

State-of-the-art
• Re-weighting can be found back in the early 2000’s;

=⇒ see books in epidemiology, under the name standardization

• But the idea of relying on an external representative sample is recent;
=⇒ in particular seminal articles can be found in the early 2010’s2 and is getting more and more popular3

• Since, other approaches than IPSW have been proposed
=⇒ outcome-modeling (G-formula), balancing, doubly-robust approaches, . . .

In practice, open questions remain
• What is the impact of the two data sources’ sizes n and m?
• Which covariates should we use?

For the rest of the work, we assume X is composed of categorical covariates
=⇒ for e.g. gender, smoking status, Glasgow score, insurance status, . . .

2Stephen R. Cole, Elizabeth A. Stuart. (2010) Generalizing Evidence From Randomized Clinical Trials to Target Populations: The ACTG 320 Trial,
American Journal of Epidemiology
3Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
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Theoretical guarantees of IPSW with oracle weights

τ̂∗
π,T, R,n =

1
n
∑
i∈R

pT(Xi)
pR(Xi)

True (or oracle) probabilities

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Properties

E
[
τ̂∗π,T,R,n

]
= τ, and Var

[
τ̂∗π,T,R,n

]
=
Voracle
n

,

where

Voracle := VarR

[
pT(X)
pR(X)

τ(X)
]
+ ER

[(
pT(X)
pR(X)

)2
VHT(X)

]
.

τ(x) being the effect of treatment on strata X = x.
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How do we estimate weights in practice?

τ̂∗
π,T,n =

1
n
∑
i∈R

pT(Xi)
p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Estimation is intuitive, and corresponds to how many times the specific combinaison of category x appears in
the trial, that is

p̂R,n(x) :=
1
n
∑
i∈R

1Xi=x

9



Theoretical guarantees of IPSW with completely estimated weights

τ̂π,n,m =
1
n
∑
i∈R

p̂T,m(Xi)

Estimated with T

p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Asymptotic properties

Letting lim
n,m→∞

m/n = λ ∈ [0,∞],

lim
n,m→∞

min(n,m) Var [τ̂π,n,m] = min(1, λ)
(
Var [τ(X)]

λ
+ Vso

)
.

Variance depends on the size of the two data sets, n and m
10



What if also estimating π?

τ̂∗
n,m =

1
n
∑
i∈R

p̂T,m(Xi)
p̂R,n(Xi)

Yi
(
YiAi
π̂n(x)

− Yi(1− Ai)
1− π̂n(x)

)
,

Asymptotic properties

Letting lim
n,m→∞

m/n = λ ∈ [0,∞],

lim
n,m→∞

min(n,m) Var [τ̂n,m] = min(1, λ)
(
Var [τ(X)]

λ
+ Ṽso

)
,

where
Ṽso ≤ Vso.

Variance is smaller if also estimating π with the data

This phenomenon is the same as the Difference-in-Means having better precision than the Horvitz-Thomson on a trial.
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Impact of additional covariates: for the worse

Covariates needed to generalize are,
• Treatment effect modifier
a covariate along which the treatment effect is modulated;

• Shifted
not the same proportion in each population.

But in practice,
one may be tempted to add as many covariates as possible:

• It does prevent to miss important ones;

• But what happen if gender is added, but is only shifted?

d
Plot showing the impact of adding a non-necessary covariates V when
generalizing. Plain lines are the theory, and dots the simulations

(i) Including non-necessary covariates can seriously damage precision!
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Impact of additional covariates: for the worse, and the better

What happen if a non-shifted covariate, known to be treatment effect modifier, is added?

(ii) Adding a non-shifted, but treatment effect modifiers covariate, in the adjustment set improves precision.
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Semi-synthetic simulation

• All the results are illustrated on semi-synthetic simulations;
• Build from two large clinical data bases, reflecting a real-world situation

• CRASH3 ∼ 9 000 individuals.
• Traumabase ∼ 30 000 individuals.

• The outcome is the only synthetic part,

Y := f (GCS,Gender) + A τ(TTT,Blood Pressure) + εTTT,

More in the main paper,
• Different asymptotic
regimes,

• The re-weighted trial has
not necessarily larger
variance,

• Effect of adding
non-necessary covariates.
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Conclusion

Main idea:

• RCTs are, and will remain, cornerstones of modern-based medicine,

• But they have limits, such as a lack of representativeness,

• So-called real-world data can help strengthen clinical evidence.

For this to happen:

• We need to build new methods . . .

• . . . along with a clear understanding of the assumptions and their statistical properties.

In this talk:

• New theoretical properties for an intuitive method i.e. trial re-weighting

• Alongside with clear and important guidelines for users about covariate selection.
=⇒ Physicians and epidemiologists have an important role to play in selecting a limited number of covariates when generalizing trial’s

findings!
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Theoretical guarantees of IPSW with semi-oracle (= so) weights

τ̂∗
π,T,n =

1
n
∑
i∈R

pT(Xi)
p̂R,n(Xi)

Estimated with R

Yi
(
Ai
π

− 1− Ai
1− π

)
,

Asymptotic properties

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ, and lim

n→∞
nVar

[
τ̂∗π,T,n

]
= Vso ≤ Voracle

Estimating pR(x) is more efficient than taking the oracle probability (counter-intuitive!)
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