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A variety of causal measures

Clinical example from
Randomized Contro

Cook and Sackett (1995)
led Trial (RCT),

-'Y the observed binary outcome (stroke after 5

years)

- A binary treatment assignment
- X baseline covariates

RCT’s findings

11.1% stroke in control, versus 6.7% in treated

Usually referring to an effect, is related to how

one contrasts those two
e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04




. Note that for bihm*v 7,
A variety of causal measures E[Y(@)] = P(Y=1 | Aza)

- [y©

Potential outcomes framework —

Clinical example from Cook and Sackett (1995) = ly(l)'
Randomized Controlled Trial (RCT), '
-'Y the observed binary outcome (stroke after 5 Count bhe stroke ot e bt

years) L, e
m 1
- A binary treatment assignment [Y( )_ 1 —[E Y(l)_

- X baseline covariates

O

RCT’s findings
11.1% stroke in control, versus 6.7% in treated

. Risk Difference Number Needed to Treak

Usually referring to an effect, is related to how

one contrasts those two
e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04 e Top = 1

— E[Y(D] 1 —E[YO]




A variety of causal measures

Continuing the clinical example

Marginal
Xb;;it,:; :\:sa‘r TRD TRR Tsr TNNT Tor Q{%Qﬂﬁs
» [All (Ps) [ —0.0452 [ 0.6 [ 1.05 | 22 | 0.57
= X = —0.006 | 0.6 | 1.01 | 167 | 0.6
X = —0.08 0.6 | 1.1 13 0.545

Computed from Cook & Sackett (1995)

“Treated group has 0.6 times the risk of having a stroke outcome when

compared with the placebo.” or "The Number Needed to Treat is 22.” or
“Effect is stronger on subgroup X=0 but not on the ratio scale.”

— leading to different impressions and heterogeneity patterns
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The age-old question of how to report effects

" We wish to decide whether we shall count the failures or the successes and
whether we shall make relative or absolute comparisons”

— Mindel C. Sheps, New England Journal of Medicine, in 1958

Source: Wikipedia

The choice of the measure is still actively discussed

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al.,
2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 ...

— CONSORT guidelines recommend to report all of them
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A desirable property: collapsibility
i.e. population’s effect is equal to a weighted sum of local effects

v

'lﬂ

A very famous example: the Simpson paradox

) | m Discussed in Greenland, 1987: Hernan et al.
Weighted sum

2011: Huitfeldt et al., 2019: Daniel et al., 2020:
L T Didelez and Stensrud, 2022 and many others.

Marginal effect
bigqer than

(a) Overall population, Tor = 0.26 (b) Tor|F=1 =~ 0.167 and Tog|p—o =~ 0.166 SubnguFS’
A=1 | 1005 95 A=1 40 60 A=1 | 965 30
A=0 | 1074 26 A=0 30 20 A=0 | 994 6

Toy example inspired from Greenland (1987).

— Unfortunately, not all measures are collapsible
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Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

2. Collapsibility

3. Logic-respecting 7 &

1. Direct collapsibility [E [T(X)] = T

= (WX, PXX, YO)) 2(X)| =,

X X

e.d RR is collapsible, with

= |:TR »(X)

(014 _
— [Y(O)] — TRR

min(z(x)), max(z(x))

with w > (), and

= (WX, PO, YY) =1



Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

1. Direct collapsibility [E [T(X)] = T

2. Collapsibility E [w(X, P(X, YO))7(X)| =,

3. Logic-respecting 7 € |min(z(x)), max(z(x))

X X

with w > (), and

= (WX, PO, YY) =1

e.d RR is collapsible, with

[0 %
= | TpR(X) - [Y(O)] = Tpp

Measure Collapsible | Logic-respecting
Risk Difference (RD) Yes Yes
Number Neeeded to Treat (NNT) No Yes
Risk Ratio (RR) Yes Yes
Survival Ratio (SR) Yes Yes
Odds Ratio (OR) No No




Through the lens of non parametric generative models

For Y continuous,

E’?xp@.a%ac& response «

(*) This only assumes that conditional expected responses are

defined for every x 9



Through the lens of non parametric generative models

Lemma”®

For Y continuous,

There exist two functions b(.) and m(.) such that,
E’?xp@;c%e.c& response «

= (Y9 | X| = b(X) + am(X)

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

Linking generative functions with measures

Tpp(X) = 1 + m(x)/b(x) Entanglement

TRD(X) = m(x) No entanglement

(*) This only assumes that conditional expected responses are

defined for every x 10



Through the lens of non parametric generative models

\ - //v
Lemma =

For Y binary, -

S . e /’/ )
There exist two Ttmgtions b(.) and m{g#Such that,

_—
SN

T P
\:\\ T
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= Y@ | XLZh( X g m(X)
I '\ Probability of event if treated |

N ~\‘
"

~
h
NN
s\
X
S

— Adapted Lemma

<)

N ’l \ vz Baseline ‘ There exist two functions b(.) and m(.) such that,
= Yf/ ) %

o - — e ——— P(Y®D =1 | X)
X | In = b(X) + am(X)

P(Y@ =0 | X)
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The example of the Russian roulette

For Y binary,

?robabai&v of event f treated

|
| by
1 =
= ////"" :
== =
= L5 /
= g o ;
i .

? _ Baseline

Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020) 12

Harmful
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Harmful
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The example of the Russian roulette LK

For Y binary,

Probability of event if treated
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Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Lemma

There exist two functions b(.) and m(.) such that,
P YYD =1|X|=bX)+a(l-bX)mX)

Simple acidi%ivi?:v is nok passibi@; anymore

Linking generative functions with measures

Trn(x) = (1 — b(x))m(x) Entanglement

TSR(X) = 1 — m(x) No entanglement
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Extension to all effect types (harmful and benetficial)

Considering a binary outcome, assume that

Assumy%i,oms

Vxe X,Vae {0,1}, O0<p (x)<1, wherep (x):=P [Y(“) =1|X= x] ’

Introducing,

my(x) =P [Y(l) =0| YV =1, X:x] and my(x) =P [Y(l) =1|YY =0, sz],

allows to have,

P =11 x=x] b0 +a ((L=bW)m,00 ~bm ). where b(x) = py(x).

Less evenks

More evenks 14



Generaliza

bility

i.e. transport trial findings to a target population %RCT — %Target

AT .

l Sampled from

X

l Sampled from
X

Trial Sample (RCT)

vO)

A Y
o |l o 1
11| o 0
o |l o 0
1] 1 1
o |l o 0

1

1

We consider set-ups where control outcome is observed or not _}

A real-world exa\mryi.e

15.0%

—
©
o

o
o~

5.0%

Relative frequencies

0.0%

Source CRASH-3 Traumabase

8 12
Glasgow score

16

What would be the effect if individuals where sampled in target population?
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Generalizability

i.e. transport trial findings to a target population TpcT = T1gr0e1

/\P S /\pT A real-world examyi.@.

l Sampled from l Sampled from
Source CRASH-3 Trauma base
X Y©
X A Y
1 . 15:0%
Trial Sample (RCT) |[ 0 || O 0 S
1 0 0 %10.0%
0 0 £
()
1| 1 ! £ sou
= || o ||l o 0 &
| 1 0.0%
4 8
Glasgow score
We consider set-ups where control outcome is observed or not _} 2

State-of-the-art

- ldeas present in epidemiological books (Rothman & Greenland, 2000)
- Foundational work from Stuart et al. 2010 and Pearl & Barenboim 2011
- Currently flourishing field with IPW, G-tormula, and doubly-robust estimators
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Two methods, two assumptions

Generalizing Conditional potential outcomes Z Local effects

SR A D RN ST N Rl A 2 , o s R S O R S TN s s A S AN S oSN ST N A S A N oS ED P U URNP APPSR ¢ s aae oo it o e e e N i) i N i N i 2 i ai e o i e e e e e s

Assumptions

for RD (Y®, vy} 1L 51X Yy —_y® 1 S|1x

Unformal |  All shifted prognostic covariates . All shifted effect moditfiers

Less covariates if homogeneity

ldentification = [Y (“)] = E' l R [Y (@) ] X]] ! = E ' TR(X)]
| '.' k?ossibla only it
~ collapsible!

— Depending on the assumptions, either conditional outcome or local treatment effect can
be generalised
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Generalizing local effect, for a binary Y and a beneficial effect

Estimate using
Erial s&mgi&

[0
1)

— TRR

N TRR(X)

e EStimate using tarqet
sample

Trr(X) = 1 — m,(x)

Thanks to the generative model,

only depends on covariates in m(X)
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| Conditional outcome | | Local effects } - Identification strategies
o

() ® 18 | P Not applicable.
(NNT is not collapsible)
A toy simulation e g
74 - — B S| NNT = Number Needed to Treat
6-__2___! ______ OR = Odds Ratio
° . RD = Risk Difference
3.5 - Not applicable RR = Risk Ratio
: n’ ° - ® is not collapsible _ : :
Introducing heterogeneities in the Russian roulette 304 - 9 — - oo $ i SRR sl SR = Survival Ratio
s + il
- . : 2.0 -
- Probability to die varies oo ————————— Subset
- Stressed people can die from a heart attack o17sq e ! ¢ : ? ! Bl All prognostic covariates
. . . 0.150 - All shifted covariates
- Executioner more merciful when facing women 0.125 " -4 1 a——k
All treatment effect modulators
0.1004 e o o o
° C
2.8 - .
() L [
?{—Y =1 l X] - b(X:L-;»s) + (1"‘ b(X1->3> m“z-:-s) SN S R —$ § N -$ Ground truth
2.0 +' —=—Fk=-1F = -=Fk-
X1 : wfes&vi.e general levelt === 0 Z —m——F—r——"7-""7 | """ "7 Source effect
’ 0.88 - ¢ o o ®
0.84 4 'l_ll -I—II -1 —|_|I -|_|I -------- Target effect
X2 : skress | | | |
0.80 - o o ? o o ¢

X3 : gender (not shifted)

— Local SR can be generalised using only stress. All others measures requires lifestyle and
stress.
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Conclusion

1. A collapsible measure is needed to generalize local eftects,

2. Some measures disentangle the baseline risk from the effect — and this depends on the

outcome nature
e [{Y is continuous — Risk Difference

* [fY is binary — Risk Ratio or Survival Ratio depending on the direction of effect

3. Generalization can be done under different assumptions, with

* more or |ess baseline covariates
® access to Y(0) in the target population or not

- Thank you for listening!

@- oo Any questions?

- Many thanks to Anders Huitfeldt, whose work

"' inspired us! , @BenedicteColnet

@ s‘{ l! - See Andrew Gelman’s blog. Feel free to react!
. e ... e O
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How ko read pi.c;:n&s

Ranges of effects

Risk Difference (RD) Number Needed to Treat (NNT)

Strong effect . No effect
| %% 20
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o
N
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A
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Common properties discussed

How the effect changes on sub-groups

Homogeneity Vx;,x, € X, 17(x) =1(x) =71

Heterogeneity dx, % € X, (X)) # 7(x,)

How the effect changes with labelling

e.g. Odds Ratio is symmetric, while Risk Ratio is not
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I. No non-zero effect can be
homogeneous on all metrics



