# Risk ratio, odds ratio, risk difference...

### Which causal measure is easier to generalize?

Bénédicte Colnet, Ph.D. student at Inria (Soda & PreMeDICaL teams) EuroCIM, Oslo, April 20th



Julie Josse Missing values & causal inference



**Gaël Varoquaux** ML & co-founder of scikit-learn



**Erwan Scornet** Random forest & missing values





## A variety of causal measures

#### Clinical example from Cook and Sackett (1995) Randomized Controlled Trial (RCT),

- Y the observed binary outcome (stroke after 5 years)
- A binary treatment assignment
- X baseline covariates

#### **RCT's findings**

11.1% stroke in control, versus 6.7% in treated

#### Usually referring to an **effect**, is related to how one contrasts those two

e.g. Ratio = 6.7/11.1 = 0.6 **or** Diff = - 0.04

2

## A variety of causal measures

#### **Clinical example from Cook and Sackett (1995)** Randomized Controlled Trial (RCT),

- Y the observed binary outcome (stroke after 5 years)
- A binary treatment assignment
- X baseline covariates

#### RCT's findings

11.1% stroke in control, versus 6.7% in treated

## Usually referring to an **effect**, is related to how one **contrasts** those two

e.g. Ratio = 6.7/11.1 = 0.6 **or** Diff = - 0.04



## A variety of causal measures

Continuing the clinical example

X = 1 <-> high baseline risk

|                  | $	au_{ m RD}$ | $	au_{	ext{rf}}$ |
|------------------|---------------|------------------|
| All $(P_s)$      | -0.0452       | 0.6              |
| X = 1            | -0.006        | 0.6              |
| $\mathbf{X} = 0$ | -0.08         | 0.6              |

``Treated group has 0.6 times the risk of having a stroke outcome when compared with the placebo." or``The Number Needed to Treat is 22." or ``Effect is stronger on subgroup X=0 but not on the ratio scale."

— leading to different impressions and heterogeneity patterns





## The age-old question of how to report effects



Source: Wikipedia

We wish to decide whether we shall count the failures or the successes and whether we shall make relative or absolute comparisons"

— Mindel C. Sheps, <u>New England Journal of Medicine</u>, in 1958

#### The choice of the measure is still actively discussed

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 ...

— CONSORT guidelines recommend to report all of them

## A desirable property: collapsibility

i.e. population's effect is equal to a weighted sum of local effects



A very famous example: the Simpson paradox

(a) Overall population,  $\tau_{\rm OR} \approx 0.26$ 

|     | Y=0  | Y=1 |
|-----|------|-----|
| A=1 | 1005 | 95  |
| A=0 | 1074 | 26  |

| F=1 | Y=0 |
|-----|-----|
| A=1 | 40  |
| A=0 | 80  |

— Unfortunately, not all measures are collapsible

Discussed in Greenland, 1987; Hernàn et al. 2011; Huitfeldt et al., 2019; Daniel et al., 2020; Didelez and Stensrud, 2022 and many others.

(b)  $\tau_{\text{OR}|F=1} \approx 0.167 \text{ and } \tau_{\text{OR}|F=0} \approx 0.166$ 

| Y=1 | F=0 | Y=0 | Y=1 |
|-----|-----|-----|-----|
| 60  | A=1 | 965 | 35  |
| 20  | A=0 | 994 | 6   |

Toy example inspired from Greenland (1987).

Marginal effect bigger than subgroups' effects

## **Collapsibility and formalism**

- Different definitions of collapsibility in the literature
- We propose three definitions encompassing previous works

1. Direct collapsibility  $\mathbb{E}[\tau(X)] = \tau$ 

2. Collapsibility  $\mathbb{E}\left[w(X, P(X, Y^{(0)})) \tau(X)\right] = \tau$ , 3. Logic-respecting  $\tau \in \begin{bmatrix} \min(\tau(x)), \max(\tau(x)) \\ x \end{bmatrix}$ 

e.g RR is collapsible, with

$$\mathbb{E}\left[\tau_{RR}(X) \frac{\mathbb{E}\left[Y^{(0)} \mid X\right]}{\mathbb{E}\left[Y^{(0)}\right]}\right] = \tau_{RR}$$



## **Collapsibility and formalism**

- Different definitions of collapsibility in the literature
- We propose three definitions encompassing previous works

1. Direct collapsibility  $\mathbb{E}[\tau(X)] = \tau$ 

2. Collapsibility  $\mathbb{E}\left[w(X, P(X, Y^{(0)})) \tau(X)\right] = \tau$ , 3. Logic-respecting  $\tau \in \begin{bmatrix} \min(\tau(x)), \max(\tau(x)) \\ x \end{bmatrix}$ 

e.g RR is collapsible, with

$$\mathbb{E}\left[\tau_{RR}(X) \frac{\mathbb{E}\left[Y^{(0)} \mid X\right]}{\mathbb{E}\left[Y^{(0)}\right]}\right] = \tau_{RR}$$



| Measure                       | Collapsible | Logic-respec |
|-------------------------------|-------------|--------------|
| Risk Difference (RD)          | Yes         | Yes          |
| Number Neeeded to Treat (NNT) | No          | Yes          |
| Risk Ratio (RR)               | Yes         | Yes          |
| Survival Ratio (SR)           | Yes         | Yes          |
| Odds Ratio (OR)               | No          | No           |



### Through the lens of non parametric generative models

### For Y <u>continuous</u>,



(\*) This only assumes that conditional expected responses are defined for every x

### Through the lens of non parametric generative models

### For Y <u>continuous</u>,



(\*) This only assumes that conditional expected responses are defined for every x

#### Lemma\*

There exist two functions b(.) and m(.) such that,  $\mathbb{E}\left[Y^{(a)} \mid X\right] = b(X) + a m(X)$ Additivity

Spirit of Robinson's decomposition (1988), further developed in Nie et al. 2020

#### Linking generative functions with measures

$$\tau_{RR}(x) = 1 + m(x)/b(x)$$
 Enhanglen

$$\tau_{RD}(x) = m(x)$$
 No enhanglement





### Through the lens of non parametric generative models

### For Y binary,





#### **Adapted Lemma**

There exist two functions b(.) and m(.) such that,

$$\ln\left(\frac{\mathbb{P}(Y^{(a)} = 1 \mid X)}{\mathbb{P}(Y^{(a)} = 0 \mid X)}\right) = b(X) + a m(X)$$

### The example of the Russian roulette

### For Y binary,



Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)



### The example of the Russian roulette

### For Y binary,



Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)



#### Lemma

There exist two functions b(.) and m(.) such th  

$$\mathbb{P}\left[Y^{(a)}=1 \mid X\right] = b(X) + a\left(1-b\left(X\right)\right)m$$
  
Simple additivity is not possible anymore

#### Linking generative functions with measures

$$au_{RD}(x) = (1 - b(x))m(x)$$
 Entanglen  
 $au_{SR}(x) = 1 - m(x)$  No entangler





### Extension to all effect types (harmful and beneficial)

Considering a binary outcome, assume that

 $\forall x \in \mathbb{X}, \forall a \in \{0,1\}, 0 < p_a(x) < 1,$ 

Introducing,

$$m_g(x) := \mathbb{P}\left[Y^{(1)} = 0 \mid Y^{(0)} = 1, X = x\right] \quad a$$

allows to have,

$$\mathbb{P}\left[Y^{(a)}=1 \mid X=x\right] = b(x) + a\left(\left(1-b(x)\right)m_b(x) - b(x)m_g(x)\right), \text{ where } b(x) := p_0(x).$$
More events <sup>14</sup> Less events

where 
$$p_a(x) := \mathbb{P}\left[Y^{(a)} = 1 \mid X = x\right]$$
 Assum

and  $m_h(x) := \mathbb{P}\left[Y^{(1)} = 1 \mid Y^{(0)} = 0, X = x\right],$ 





### Generalizability

### i.e. transport trial findings to a target population $\hat{\tau}_{RCT} \longrightarrow \hat{\tau}_{Target}$



What would be the effect if individuals where sampled in target population?



### Generalizability

#### i.e. transport trial findings to a target pop



#### State-of-the-art

- Ideas present in epidemiological books (Rothman & Greenland, 2000)
- Foundational work from Stuart et al. 2010 and Pearl & Barenboim 2011
- Currently flourishing field with IPW, G-formula, and doubly-robust estimators

ulation 
$$\hat{\tau}_{RCT} \longrightarrow \hat{\tau}_{Target}$$

Focus on generalizing the difference



### Two methods, two assumptions

| Generalizing          | Conditional potential outcomes                                                                              | Local effects                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Assumptions<br>for RD | $\{Y^{(0)}, Y^{(1)}\} \perp S \mid X$                                                                       | $Y^{(1)} - Y^{(0)} \perp S \mid X$                                                          |
| Unformal              | All shifted prognostic covariates                                                                           | All shifted treatment effect mod                                                            |
| Identification        | $\mathbb{E}^{T}\left[Y^{(a)}\right] = \mathbb{E}^{T}\left[\mathbb{E}^{R}\left[Y^{(a)} \mid X\right]\right]$ | $\tau^{T} = \mathbb{E} \left[ w(X, Y^{(0)}) \tau^{R}(X) \right]$ Possible only collapsible! |

— Depending on the assumptions, either conditional outcome or local treatment effect can be generalised

S is the indicator of population's membership



#### difiers eneity



### Generalizing local effect, for a binary Y and a beneficial effect



only depends on covariates in m(X)

i.e. reducing number of events





## A toy simulation

#### Introducing heterogeneities in the Russian roulette

- Probability to die varies
  - Stressed people can die from a heart attack
  - Executioner more merciful when facing women

 $P[Y = 1 | X] = b(X_{1->3}) + (1 - b(X_{1->3}) m(X_{2->3})$ X1 : lifestyle general level X2 : stress X3 : gender (not shifted)

— Local SR can be generalised using only stress. All others measures requires lifestyle and stress.



### Conclusion

- 1. A collapsible measure is needed to generalize local effects,
- outcome nature
  - If Y is continuous Risk Difference
  - If Y is binary Risk Ratio or Survival Ratio depending on the direction of effect
- 3. Generalization can be done under different assumptions, with
  - more or less baseline covariates
  - access to Y(0) in the target population or not

**ArXiv** 



- Many thanks to Anders Huitfeldt, whose work inspired us!
- See Andrew Gelman's blog. Feel free to react!

2. Some measures disentangle the baseline risk from the effect — and this depends on the

Thank you for listening! Any questions?









#### How to read plots



#### Odds Ratio (OR) Log-Odds Ratio (log-OR)



| at | (Г | V | N  | ) |
|----|----|---|----|---|
|    |    |   | 20 |   |
|    | -  |   | 15 |   |
|    | -  |   | 10 |   |
|    |    |   | 5  |   |
|    |    |   |    |   |





## **Common properties discussed**

#### How the effect changes on sub-groups

- Homogeneity  $\forall x_1, x_2 \in \mathbb{X}, \quad \tau(x_1) = \tau(x_2) = \tau$
- $\exists x_1, x_2 \in \mathbb{X}, \quad \tau(x_1) \neq \tau(x_2)$ Heterogeneity

#### How the effect changes with labelling

e.g. Odds Ratio is symmetric, while Risk Ratio is not







4=0

A=1

A=O