Risk ratio, odds ratio, risk difference:
,’ ¢ lneda— Which causal measure is easier to generalize? :
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Causal measure formalism A variety of measures....

E.g. benefit of antihyperintensive therapy (A) against stroke (Y) [1]

TRD TRR Tsr TNNT Tor

All (Ps) | —0.0452 [ 0.6 | 1.05 | 22 [ 0.57

X =1 —-0.006 | 0.6 | 1.01 | 167 0.6
X =0 —-0.08 | 0.6 | 1.1 13 | 0.545

“Treated group has 0.6 times the risk of having a stroke outcome

when compared with the placebo.” — “"The Number Needed to Treat is
22."” — “Effect is stronger on subgroup X=0 but not on the ratio scale.”

— leading to different impressions and heterogeneity patterns

| A desirable property: collapsibility

i.e. population’s effect is equal to a weighted sum of local effects
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) — Unfortunately, not all measures are collapsible (e.g. OR, log-OR, NNT)

Reverse the thinking, through the lens of baseline covariates
— Every generative process can be decomposed in a baseline level and alteration part with no assumption.

Continuous outcome — Robinson decomposition [2] Binary outcome — What model?

- If treatment increases occurrences (i.e. deleterious effect)

= (Y@ | X| = b(X) + am(X)
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Different sets of covariates for generalization of causal effects?
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’ —- if Y is binary RR or SR, if Y is continuous RD

[ (*) This may require to have access to Y(0) in the target sample. As an alternative, one can generalize conditional outcomes but 3.0

i with all shifted prognostic covariates
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[1] Cook and Sackett, 1995; [2] Robinson, 1988; [3] Pearl and Bareinboim, 2011; PD b d with | ]
[4] Huitfeld, 2018; [5] Pearl and Cinelli 2020 — RD can be recovered with less covariates



