
Risk ratio, odds ratio, risk difference:

Which causal measure is easier to generalize? 

Count the living

[1] Cook and Sackett, 1995; [2] Robinson, 1988; [3] Pearl and Bareinboim, 2011; 

[4] Huitfeld, 2018; [5] Pearl and Cinelli 2020
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Count the dead

Risk Difference Number Needed to Treat

Odds Ratio

Reverse the thinking, through the lens of baseline covariates

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

Continuous outcome — Robinson decomposition [2] Binary outcome — What model? 

ℙ [Y(a) = 1 ∣ X] = b(X) + a (1 − b (X)) m(X)

Simple additivity is not possible anymore due to 
the binary nature of Y

If treatment increases occurrences (i.e. deleterious effect)

Additivity

τRD(x) = m(x) τRR(x) = 1 + m(x)/b(x)

Modification

τRD(x) = (1 − b(x))m(x) τSR(x) = 1 − m(x)

Entanglement No entanglement

Generalisation: re-weighting trial local effects            [3,4,5] 


— requires measure collapsibility

— requires in general all shifted covariates that are prognostic or treatment 
effect  modifiers 

— but some measures requires less covariates(*) as soon as they locally 
disentangle baseline and modification

—- if Y is binary RR or SR, if Y is continuous RD

E.g. benefit of antihyperintensive therapy (A)  against stroke (Y)    [1]
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A variety of measures….

— leading to different impressions and heterogeneity patterns

i.e. population’s effect is equal to a weighted sum of local effects

👩⚕ ``Treated group has 0.6 times the risk of having a stroke outcome 
when compared with the placebo.” — ``The Number Needed to Treat is 
22.” — ``Effect is stronger on subgroup X=0 but not on the ratio scale.”

A desirable property: collapsibility

Causal measure formalism

— Unfortunately, not all measures are collapsible (e.g. OR, log-OR, NNT)

Transferring trial’s findings to a 
target population

Entanglement No entanglement

— Every generative process can be decomposed in a baseline level and alteration part with no assumption. 

— RD can be recovered with less covariates

Baseline

τ(x)

Extract of the 
simulations 
for Y ∈ R

Different sets of covariates for generalization of causal effects?

Target effect

Source effect 

Source effect 
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(*) This may require to have access to Y(0) in the target sample. As an alternative, one can generalize conditional outcomes but 
with all shifted prognostic covariates


