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Outline

2

1. Introduction 
A. Motivating example from critical care medicine 
B. State-of-the-art 

— Focus on two contributions — 

2. Finite and large sample analysis of the IPSW estimator 

3. Extension to different causal measures



A longstanding presence of Randomized Controlled Trials (RCTs) … now being the gold-
standard
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James Lind experiment on scorbut in 1757 
Source: Wikipedia



A longstanding presence of Randomized Controlled Trials (RCTs) … now being the gold-
standard
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Recently approved drugs by the Food and Drug Administration 
(FDA), all with their corresponding RCT snapshot and information. 

Source: www.fda.gov - 2022

James Lind experiment on scorbut in 1757 
Source: Wikipedia

http://www.fda.gov


RCTs’ principle : estimating a causal effect
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Principle

Random split

Assign treatment

Assign control

Measure outcome 
in each group
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Principle

Random split

Assign treatment

Assign control

Measure outcome 
in each group

e.g. 18.5% dead

In practice : the CRASH-3 trial investigating Tranexamic Acid effect on brain injured (TBI) related death

Source: Screenshot from the Lancet (CRASH-3 main report)

e.g. 19.5% dead

RCTs’ principle : estimating a causal effect



The scope of RCTs is increasingly under scrutiny 
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Random split

Assign treatment

Assign control

Measure outcome 
in each group

Short timeframe

Treatment’s compliance far from 
real world observance

Unrepresentativeness of the 
population

Limited sample size e.g. 18.5% dead

e.g. 19.5% dead



The scope of RCTs is increasingly under scrutiny 
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Random split

Assign treatment

Assign control

Measure outcome 
in each group

Short timeframe

Treatment’s compliance far from 
real world observance

Unrepresentativeness of the 
population

Limited sample size e.g. 18.5% dead

e.g. 19.5% dead

“‘External validity’ asks the question of generalizability: to what populations, settings, treatment variables, and 
measurement variables can this effect be generalized?”  — Campbell and Stanley (1963), p. 5



The promise of detailed and larger observational or real world data sets
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Estimate the efficacy in real-world conditions 

- Using large cohorts like hospital data bases 

- To emulate a target trial(1) leveraging observed 
confounding variables 

- Solving both representativity and effective 
treatment given 

🎁 Large sample enabling more personalization (i.e 
stratified effects) 

Source: FDA’s website(1) Hernán and Robins, Using Big Data to Emulate a Target Trial When a 
Randomized Trial Is Not Available, Am J Epidemiol, 2016
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• 30,000 patients of unique size and granularity in Europe (~9,000 suffering from TBI) 
• But randomisation does not hold, e.g. severe trauma are more likely to be treated

Among treated  
38% dead

Among control  
16% dead

The example of a large French national cohort — The Traumabase

Confusion problem
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• 30,000 patients of unique size and granularity in Europe (~9,000 suffering from TBI) 
• But randomisation does not hold, e.g. severe trauma are more likely to be treated

Among treated  
38% dead

Among control  
16% dead

After adjustment on confounding covariates (Glasgow score, age, blood pressure, …), the null 
hypothesis of no effect can not be rejected(2).

(2) Mayer et al., Doubly robust treatment effect estimation with missing attributes, Annals of Applied Statistics 2019

The example of a large French national cohort — The Traumabase

Confusion problem

The risk of head injury-related death reduced with tranexamic acid in patients with mild-to-moderate head injury (RR 0·78 [95% 
CI 0·64–0·95]) but not in patients with severe head injury (0·99 [95% CI 0·91–1·07]

Is there a paradox?
CRASH-3 key results

https://www.imkemayer.com/publication/doubly-robust-na/


Idea — Using both types of data : experimental and observational
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Fear of unobserved confounding in the observational sample. 

     



Idea — Using both types of data : experimental and observational
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Fear of unobserved confounding in the observational sample. 

Both Randomized Controlled Trial (RCT) data and observational data have limitations and 
advantages.  

The idea is to combine them to get the best of both worlds.      

Accepted for publication in Statistical Science



Idea — Using both types of data
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Fear of unobserved confounding in the observational sample. 

Both Randomized Controlled Trial (RCT) data and observational data have limitations and 
advantages.  

The idea is to combine them to get the best of both worlds.      

— Using observational data to 
improve trial’s representativity  

Accepted for publication in Statistical Science



Generalizing or transporting CRASH-3 findings to the Traumabase population
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👩⚕ ``What would have been measured as an effect in CRASH-3 if the trial was 
sampled in the Traumabase’?” 



16

Hypothetical drawing of how the Glasgow 
score could modulate treatment effect

Generalizing or transporting CRASH-3 findings to the Traumabase population



State-of-the art in a Nutshell
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- Foundational work in epidemiological books (Rothman & Greenland, 2000) 

- Idea of using two data sets (Stuart et al. 2010 and Pearl & Barenboim 2011) 

- Flourishing field …. in statistics! 

- Usually clinical papers focus on characterising the lack of representativeness 

• Comparison of Table 1 
• % of patients actually treated that would have been eligible



Notations
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For each individual i, consider each of the possible outcomes for treated Y(1) , and control Y(0) .

A Y(1) Y(0) YX
0 
0 
1 
0 
1

NA 
NA 
0 
NA 
1

0 
1 
NA 
1 
NA

0 
1 
0 
1 
1

F 
M 
M 
F 
F

1 
2 
1 
3 
2

binary treatmentcharacteristics

Δi := Y(1)
i − Y(0)

iIndividual effect

Comparison of two potential outcomes

Detailed introduction to potential outcomes framework from Imbens and Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences, 2015



Notations
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A Y(1) Y(0) YX
0 
0 
1 
0 
1

NA 
NA 
0 
NA 
1

0 
1 
NA 
1 
NA

0 
1 
0 
1 
1

F 
M 
M 
F 
F

1 
2 
1 
3 
2

binary treatmentcharacteristics

ATE ≡ τ := 𝔼 [Δi]

Δi := Y(1)
i − Y(0)

iIndividual effect

Average effect

Can not be observed!

For each individual i, consider each of the possible outcomes for treated Y(1) , and control Y(0) .

Detailed introduction to potential outcomes framework from Imbens and Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences, 2015
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Denoting, 

- A the binary treatment 
- X the covariates 
- Y the observed outcome

Two samples, 

- A trial of size n sampled from a 
population pR(X), 

- A data set of size m sampled 
from  pT(X) the target 
population of interest.

The potential outcomes framework for generalization 
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- X the covariates 
- Y the observed outcome

Two samples, 

- A trial of size n sampled from a 
population pR(X), 

- A data set of size m sampled 
from  pT(X) the target 
population of interest.
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Denoting, 

- A the binary treatment 
- X the covariates 
- Y the observed outcome

Two samples, 

- A trial of size n sampled from a 
population pR(X), 

- A data set of size m sampled 
from  pT(X) the target 
population of interest.

The potential outcomes framework for generalization 



Generalization’s causal assumptions
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Transportability assumption

∀x ∈ 𝕏, ℙR(Y(1) − Y(0) ∣ X = x) = ℙT(Y(1) − Y(0) ∣ X = x)

Spirit of ignobility assumption for 
a single observational data set 

— Needed covariates are shifted treatment effect modifiers.



Generalization’s causal assumptions
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Transportability assumption

∀x ∈ 𝕏, 𝔼R [Y(1) − Y(0) ∣ X = x] = 𝔼T [Y(1) − Y(0) ∣ X = x]

{Y(1), Y(0} ⊥⊥ S ∣ XY(1) − Y(0 ⊥⊥ S ∣ X

Several versions in practice

Dahabreh et al. 2020

Stuart et al. 2011Nguyen et al. 2017

e.g. of a lighter version

Most common notation where S 
denotes the sample’s indicator

Stronger assumption

∀x ∈ 𝕏, ℙR(Y(1) − Y(0) ∣ X = x) = ℙT(Y(1) − Y(0) ∣ X = x)

— Needed covariates are shifted treatment effect modifiers.



Generalization’s causal assumptions
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supp(PT(X)) ⊂ supp(PR(X))

Transportability assumption

Positivity assumption

— Needed covariates are shifted treatment effect modifiers.

— Each individuals in the target population has to be represented in the trial.
Also found as  
P(S=1|X) > 1

∀x ∈ 𝕏, ℙR(Y(1) − Y(0) ∣ X = x) = ℙT(Y(1) − Y(0) ∣ X = x)
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2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 

Treated

Control

Trial data
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 

Treated

Control

Trial data

Definition

̂τIPSW,n,m =
1
n ∑

i∈Trial

ŵn,m(Xi)( YiAi

π
−

Yi(1 − Ai)
1 − π )

Weights

Spirit of 
IPW π := PRCT(A=1) 

Typically π = 0.5

2 main approaches to generalize

Trial only
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 

Treated

Control

Trial data

Definition

̂τIPSW,n,m =
1
n ∑

i∈Trial

̂pT,m(Xi)
̂pR,n(Xi) ( YiAi

π
−

Yi(1 − Ai)
1 − π )Spirit of 

IPW
π = PRCT(A=1) 
Typically π = 0.5

2 main approaches to generalize
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 

Treated

Control

Trial data

Consistency

̂τIPSW,n,m
L1

⟶
n,m→∞

τT
(H1) sup

x∈𝒳
| ŵn,m(x) −

pT

pR
(x) | = ϵn,m

a.s.⟶
n,m→∞

0

(H2) 𝔼[ε2
n,m] a.s.⟶

n,m→∞
0

then

Assuming that Y is square integrable, and that

See Colnet et al. 2021, published in Journal of Causal Inference

2 main approaches to generalize
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 
2. Model the response on the trial and impute the target sample — plug-in G-formula

Treated

Control

Trial data

2 main approaches to generalize
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 
2. Model the response on the trial and impute the target sample — plug-in G-formula

Treated

Control

̂μ1,n(X) := �̂� [Y ∣ A = 1]

̂μ0,n(X) := �̂� [Y ∣ A = 0]

Trial data
Estimated on the trial

2 main approaches to generalize
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 
2. Model the response on the trial and impute the target sample — plug-in G-formula

Treated

Control

̂μ1,n(X) := �̂� [Y ∣ A = 1]

̂μ0,n(X) := �̂� [Y ∣ A = 0]

Trial data

Definition

̂τG,n,m :=
1
m ∑

i∈Target

̂μ1,n(Xi) − ̂μ0,n(Xi)Marginalised 
on the target 

sample

Estimated on the trial

2 main approaches to generalize
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1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 
2. Model the response on the trial and impute the target sample — plug-in G-formula

Treated

Control

̂μ1,n(X) := �̂� [Y ∣ A = 1]

̂μ0,n(X) := �̂� [Y ∣ A = 0]

Trial data

Consistency

̂τG,n,m
L1

⟶
n,m→∞

τT

See Colnet et al. 2021, published in Journal of Causal Inference

(H1) 𝔼 [ | ̂μa,n(X) − μa(X) | ∣ T] p
⟶
n→∞

0

(H2) ∃C1, N1 ∀n ≥ N1, 𝔼[ ̂μ2
a,n(X) ∣ 𝒟n] ⩽ C1

then

2 main approaches to generalize
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Application on the CRASH-3 & Traumabase example

Extract of the applied results published in 
Statistical sciences.

Widely varying results!
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Application on the CRASH-3 & Traumabase example

Extract of the applied results published in 
Statistical sciences.

Widely varying results! List of open questions

• Effect of finite sample? 

• Which covariate to include?  -— 
would adding prognostic variables 
reduce the variance as in the 
classical case?  

• Clinicians collaborators where 
rather interested in the ratio, 
rather than the difference
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Contributions
1. A review of methods to combine experimental and observational data 

— Causal inference methods for combining randomized trials and observational studies: a review, co-authored with 

Imke Mayer, Statistical Science, 2022 

2. Consistency proofs and sensitivity analysis for generalisation 
— Causal effect on a target population: A sensitivity analysis to handle missing covariates, Journal of Causal 

Inference, 2022 

3. Properties of IPWS and discussion on covariates selection 
— Reweighting the RCT for generalization: finite sample error and variable selection, in revision in JRRS-A 

4. Extension of generalization to other causal measures than the difference 
— Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?, submitted to Stat. In Med. 
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Recalling what is done on a classical clinical randomized trial
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̂τHT,n =
1
n ∑

i∈Trial
( YiAi

π
−

Yi(1 − Ai)
1 − π ) Probability to receive 

treatment, usually 0.5

Horvitz-Thomson 
estimator



Recalling what is done on a classical clinical randomized trial
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̂τHT,n =
1
n ∑

i∈Trial
( YiAi

π
−

Yi(1 − Ai)
1 − π ) Probability to receive 

treatment, usually 0.5

Horvitz-Thomson 
estimator

Properties

𝔼 [ ̂τHT,n] = τR n Var [ ̂τHT,n] =
𝔼 [(Y(1))2]

π
+

𝔼 [(Y(0))2]
1 − π

− τ2 := VHT

Unbiased Finite sample variance



Enriching the trial data with the target sample data
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̂τIPSW,n,m =
1
n ∑

i∈Trial

̂pT,m(Xi)
̂pR,n(Xi) ( YiAi

π
−

Yi(1 − Ai)
1 − π )

Depends on n and m !

Wished properties?

𝔼 [ ̂τIPSW,n] = τT
n Var [ ̂τIPSW,n,m] = ?

Unbiased

Same as single RCT



Theoretical guarantees of IPSW with oracle weights

41

̂τ*π,T,R,n =
1
n ∑

i∈ℛ

pT(Xi)
pR(Xi)

Yi ( Ai

π
−

1 − Ai

1 − π )



Theoretical guarantees of IPSW with oracle weights
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̂τ*π,T,R,n =
1
n ∑

i∈ℛ

pT(Xi)
pR(Xi)

Yi ( Ai

π
−

1 − Ai

1 − π )

𝔼 [ ̂τ*π,T,R,n] = τT Var [ ̂τ*π,T,R,n] =
Vo

n

where Vo = VarR [ pT(X)
pR(X)

τ(X)] + 𝔼R [( pT(X)
pR(X) )

2

VHT(X)]

Finite-sample properties — Oracle weights



How do we estimate weights in practice?
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Assumption:  assume X is composed of categorical covariates — e.g. smoking status, gender, …

̂pR,n(x) :=
1
n ∑

i∈ℝ

1Xi=x̂τ*π,T,n =
1
n ∑

i∈ℛ

pT(Xi)
̂pR,n(Xi)

Yi ( Ai

π
−

1 − Ai

1 − π ) where



How do we estimate weights in practice?
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Assumption:  assume X is composed of categorical covariates — e.g. smoking status, gender, …

̂pR,n(x) :=
1
n ∑

i∈ℝ

1Xi=x

where

Finite-sample properties — Semi oracle weights

̂τ*π,T,n =
1
n ∑

i∈ℛ

pT(Xi)
̂pR,n(Xi)

Yi ( Ai

π
−

1 − Ai

1 − π ) where

𝔼 [ ̂τ*π,T,n] − τ = − ∑
x∈𝕏

pT(x)(1 − pR(x))n τ(x)

Var [ ̂τ*π,T,n] ≤
2Vso

n + 1
+ (1 − min

x∈𝕏
pR(x))

n

𝔼T [τ(X)2]

Vso := 𝔼R [( pT(X)
pR(X) )

2

VHT(X)] = Vo − VarR [ pT(X)
pR(X)

τ(X)]

- Positive but exponentially small bias 
compared to the oracle estimate due 
to undercoverage of some categories 
in the trial 

-  Smaller asymptotic variance than the 
oracle estimate(4)

(4) Robins et al. (1992). Estimating exposure effects by modelling the expectation of exposure 
conditional on confounders. Biometrics.



Theoretical guarantees of IPSW with completely estimated weights
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Finite-sample properties — Fully estimated weights

̂τπ,n,m =
1
n ∑

i∈ℛ

̂pT,m(Xi)
̂pR,n(Xi)

Yi ( Ai

π
−

1 − Ai

1 − π )

𝔼 [ ̂τ*π,T,n] − τ = − ∑
x∈𝕏

pT(x)(1 − pR(x))n τ(x)

Var [ ̂τπ,n,m] ≤
2Vso

n + 1
+

VarT [τ(X)]
m

- Same bias as the semi oracle: bias can only be 
explained by a limited RCT 

- Two sample size: RCT (n) and observational 
study (m) 
• Additional term decreasing as 1/m 

compared to the semi oracle estimate 
• Consistent if both n and m → ∞. In this case, 

the first two terms dominate.

+
2

m (n + 1)
𝔼R [ pT (X)(1 − pT (X))

pR (X)2 VHT(X)]
+(1 − min

x
pR(x))

n/2

𝔼T [τ(X)2] (1 +
4
m )



IPSW Large sample properties
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Two data samples sizes dictating two asymptotic variance  

If target >> trial (i.e. λ = ∞), asymptotic variance = semi-oracle’s one and depends on the ratio of 
probabilities 

If target << trial (i.e. λ = 0), asymptotic variance = conditional treatment effect variance

Large sample properties — Fully estimated weights

lim
n,m→∞

min(n, m)Var [ ̂τπ,n,m] = min(1,λ)(
Var [τ(X)]

λ
+ Vso)

lim
n,m→∞

m/n = λ ∈ [0,∞],Letting



IPSW Large sample properties - Illustration
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Practical recommandation 

e.g. When n = 200 and m = 50, it is 
better to double the size of the 
observational data than that of the 
RCT.



Impact of additional covariates: for the worse?
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-   Covariates needed to generalize are, 

• Treatment effect modifier  
A covariate along which the treatment effect is 
modulated 

• Shifted 
Not the same proportion in each population 

-  In practice, one may be tempted to add 
many covariates 
• It does prevent to miss important ones 
• But what happen if gender is added but is only shifted?

Dots are simulations, plain lines are the theory introduced on next slide



Impact of adding a shifted covariate which is not treatment effect modifier
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Non treatment effect modifier

∀v ∈ 𝕍, ∀s ∈ {T, R}, ℙs(Y(1) − Y(0) ∣ X = x, V = v) = ℙs(Y(1) − Y(0) ∣ X = x)

V does not modulate treatment effect, that is



Impact of adding a shifted covariate which is not treatment effect modifier
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Non treatment effect modifier

∀v ∈ 𝕍, ∀s ∈ {T, R}, ℙs(Y(1) − Y(0) ∣ X = x, V = v) = ℙs(Y(1) − Y(0) ∣ X = x)

V does not modulate treatment effect modifier, that is

Shifted covariate which is not a treatment effect modifier

Consider the semi-oracle IPSW estimator and a set of additional shifted covariates V, independent of X, 
which are not treatment effect modifier, then

lim
n→∞

n VarR [ ̂τ*T,n,m(X, V)] = ( ∑
v∈𝒱

pT(v)2

pR(v) ) lim
n→∞

n VarR [ ̂τ*T,n,m(X)]

Including non-necessary covariates can seriously damage precision



Impact of adding a non-shifted covariate which is a treatment effect modifier
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Non-shifted covariate

∀v ∈ 𝕍, pT(v) = pR(v) .
V is not shifted, that is

Non-shifted covariate which is a treatment effect modifier

Consider the semi-oracle IPSW estimator and a set of additional non-shifted treatment effect modifier set 
V, independent of X. Then,

lim
n→∞

n VarR [ ̂τ*T,n(X, V)] = lim
n→∞

n VarR [ ̂τ*T,n(X)] − 𝔼R [ pT(X)
pR(X)

Var [τ(X, V) ∣ X]]

Including non-necessary covariates can improve precision



Semi-synthetic simulation
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We illustrate the results on semi-synthetic simulations 

-  Simulations are built from CRASH-3 (~ 9,000 individuals) and Traumabase (~30,000 individuals); 

-  Doing so, this reflects a real-world shift; 

-  Covariates are : Glasgow score, gender, time-to-treatment (TTT), blood pressure; 

-  Time to treatment is simulated as not present in the Traumabase; 

-  As all covariates are shifted (even a little), a non-shifted treatment effect modifier Z is created  

-  The outcome is synthetic.

Y = 10 −Glasgow + (if Girl: − 5 else:0) + A (15(6 − TTT) + 3 * (Blood.pressure − 1)2 + 50Z) + εTTT

Random gaussian noise whose 
variance depends on the value of TTT



Results from the semi-synthetic simulations (1)
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This simulation does not include Z as the focus is not on adding non-
useful covariates

Estimate on the trial 
(Horvitz-Thomson)

IPSW IPSW 
Estimating Pi     

1. Re-weighting allows to recover the target effect 

2. Two additional theoretical results not detailed 
above 

- Reducing variance when estimating the 
probability to be treated in the trial Pi, 

- Re-weighted trial has not necessarily a larger 
variance.

Target effect

Trial’s population effect



Results from the semi-synthetic simulations (2)
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Effect of non-necessary covariates on 
the variance 

IPSW with n = 3000 and m = 10000 and 
1,000 repetitions 

- The addition of the covariate GCS 
increases the variance,  

- while the addition of a non-shifted 
treatment effect modifier leads to an 
improvement in variance.

This simulation includes Z as the focus is on adding non-useful covariates



Risk ratio, odds 
ratio, risk 
difference
Which causal measure is 
easier to generalize?
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Contributions
1. A review of methods to combine experimental and observational data 

— Causal inference methods for combining randomized trials and observational studies: a review, co-authored with 

Imke Mayer, Statistical Science, 2022 

2. Consistency proofs and sensitivity analysis for generalisation 
— Causal effect on a target population: A sensitivity analysis to handle missing covariates, Journal of Causal 

Inference, 2022 

3. Properties of IPWS and discussion on covariates selection 
— Reweighting the RCT for generalization: finite sample error and variable selection, in revision in JRRS-A 

4. Extension of generalization to other causal measures than the difference 
— Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?, submitted to Stat. In Med. 



Illustrative example

RCT from Cook and Sackett (1995) 

- Y the observed binary outcome  
- A binary treatment assignment 
- X baseline covariates

57

Stroke after 5 years  
11.1% Control      —  vs —      6.7 % Treated

Usually referring to an effect, is related to how 
one contrasts those two 

e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04



Count the non-stroke

τRR =
𝔼 [Y(1)]
𝔼 [Y(0)] τSR =

1 − 𝔼 [Y(1)]
1 − 𝔼 [Y(0)]

τRD = 𝔼 [Y(1)] − 𝔼 [Y(0)] τNNT = τ−1
RD

τOR =
𝔼[Y(1)]

1 − 𝔼[Y(1)] ( 1 − 𝔼[Y(0)]
1 − 𝔼[Y(0)] )

−1

Count the stroke

Risk Difference Number Needed to Treat

Odds Ratio

58

RCT from Cook and Sackett (1995) 

- Y the observed binary outcome  
- A binary treatment assignment 
- X baseline covariates

Illustrative example

— A variety of causal measures exist

𝔼 [Y(1)]
𝔼 [Y(0)]Potential outcomes framework

Note that for binary Y, 
E[Y(a)] = P(Y(a)=1)

Stroke after 5 years  
11.1% Control      —  vs —      6.7 % Treated



Computing all the measures on the illustrative clinical example

59

— leads to different impressions and heterogeneity patterns

👩⚕ ``Treated group has 0.6 times the risk of having a stroke outcome when compared with 
the placebo.” or` `The Number Needed to Treat is 22.” 

Computed from Cook & Sackett (1995)

Marginal effects

Conditional 
effects

X = 1 <-> low 
baseline risk

τ
τ(x)



The age-old question of how to report effects
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`` We wish to decide whether we shall count the failures or the successes and 
whether we shall make relative or absolute comparisons” 

— Mindel C. Sheps, New England Journal of Medicine, in 1958
Source: Wikipedia

The choice of the measure is still actively discussed 

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 
2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 … 

— CONSORT guidelines recommend to report all of them



A desirable property: collapsibility
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ττ(x3)

i.e. population’s effect is equal to a weighted sum of local effects

Weighted sum
📕 Discussed in Greenland, 1987; Hernàn et al. 

2011; Huitfeldt et al., 2019; Daniel et al., 2020; 
Didelez and Stensrud, 2022 and many others.



A desirable property: collapsibility
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ττ(x3)

i.e. population’s effect is equal to a weighted sum of local effects

A very famous example: the Simpson paradox

Toy example inspired from Greenland (1987).

Weighted sum

Marginal effect 
bigger than 
subgroups’ 

effects

📕 Discussed in Greenland, 1987; Hernàn et al. 

2011; Huitfeldt et al., 2019; Daniel et al., 2020; 
Didelez and Stensrud, 2022 and many others.

— Unfortunately, not all measures are collapsible



Collapsibility and formalism
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• Different definitions of collapsibility in the literature 



Collapsibility and formalism

64

• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 𝔼 [τ(X)] = τ



Collapsibility and formalism
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• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 

2. Collapsibility 

𝔼 [τ(X)] = τ

𝔼 [w(X, P(X, Y(0))) τ(X)] = τ, with w ≥ 0, and 𝔼 [w(X, P(X, Y(0)))] = 1

𝔼 [τRR(X)
𝔼 [Y(0) ∣ X]

𝔼 [Y(0)] ] = τRRe.g RR is collapsible, with.



Collapsibility and formalism
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• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 

2. Collapsibility 

3. Logic-respecting

𝔼 [τ(X)] = τ

𝔼 [w(X, P(X, Y(0))) τ(X)] = τ, with w ≥ 0, and 𝔼 [w(X, P(X, Y(0)))] = 1

τ ∈ [min
x

(τ(x)), max
x

(τ(x))]



Collapsibility and formalism
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• Different definitions of collapsibility in the literature 

• We propose three definitions encompassing previous works 

1. Direct collapsibility 

2. Collapsibility 

3. Logic-respecting

𝔼 [τ(X)] = τ

𝔼 [w(X, P(X, Y(0))) τ(X)] = τ, with w ≥ 0, and 𝔼 [w(X, P(X, Y(0)))] = 1

τ ∈ [min
x

(τ(x)), max
x

(τ(x))]



Through the lens of non parametric generative models
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Expected response

E[Y
(1) |

 X =
 x]

E[Y(0) | 
X = x

]

X

Y 

For Y continuous,

Baseline

(*) This only assumes that conditional expected responses are 
defined for every x



Through the lens of non parametric generative models

69

Expected response

E[Y
(1) |

 X =
 x]

E[Y(0) | 
X = x

]

X

Y 

For Y continuous,

Baseline

(*) This only assumes that conditional expected responses are 
defined for every x

Lemma*  

There exist two functions b(.) and m(.) such that,

Additivity

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

m(x)



Through the lens of non parametric generative models
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Expected response

E[Y
(1) |

 X =
 x]

E[Y(0) | 
X = x

]

X

Y 

For Y continuous,

Baseline

(*) This only assumes that conditional expected responses are 
defined for every x

Lemma*  

There exist two functions b(.) and m(.) such that,

Additivity

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

Linking generative functions with measures

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

τRD(x) = m(x)

τRR(x) = 1 + m(x)/b(x) Entanglement 

No entanglement

m(x)



Through the lens of non parametric generative models
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Probability of event if treated

P[Y(1) = 1 | X = x]

P[Y(0) =
 1 | X

 = x]

For Y binary,

Baseline

Lemma  

There exist two functions b(.) and m(.) such that,

Additivity

𝔼 [Y(a) ∣ X] = b(X) + a m(X)

1

0

Adapted Lemma 

There exist two functions b(.) and m(.) such that,

ln ( ℙ(Y(a) = 1 ∣ X)
ℙ(Y(a) = 0 ∣ X) ) = b(X) + a m(X)X

Y 



The example of the Russian roulette 

72Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Harmful



The example of the Russian roulette 

73Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Lemma  

There exist two functions b(.) and m(.) such that,

ℙ [Y(a) = 1 ∣ X] = b(X) + a (1 − b (X)) 1
6

Simple additivity is not possible anymore

Harmful



The example of the Russian roulette 

74Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Lemma  

There exist two functions b(.) and m(.) such that,

Simple additivity is not possible anymore

τRD(x) = (1 − b(x))
1
6

τSR(x) = 1 −
1
6

Linking generative functions with measures

Entanglement 

No entanglement

Harmful

ℙ [Y(a) = 1 ∣ X] = b(X) + a (1 − b (X)) 1
6



The example of the Russian roulette 

75Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Probability of event if treated

For Y binary,

Baseline

1

0

X
1/6

Lemma  

There exist two functions b(.) and m(.) such that,

ℙ [Y(a) = 1 ∣ X] = b(X) + a (1 − b (X)) m(X)

Simple additivity is not possible anymore

τRD(x) = (1 − b(x))m(x)

τSR(x) = 1 − m(x)

Linking generative functions with measures

Entanglement 

No entanglement

Harmful



Extension to all effect types (harmful and beneficial)

mg(x) := ℙ [Y(1) = 0 ∣ Y(0) = 1, X = x] and mb(x) := ℙ [Y(1) = 1 ∣ Y(0) = 0, X = x],

Introducing,

Considering a binary outcome, assume that 

∀x ∈ 𝕏, ∀a ∈ {0,1}, 0 < pa(x) < 1, where pa(x) := ℙ [Y(a) = 1 ∣ X = x] Assumptions
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Extension to all effect types (harmful and beneficial)

mg(x) := ℙ [Y(1) = 0 ∣ Y(0) = 1, X = x] and mb(x) := ℙ [Y(1) = 1 ∣ Y(0) = 0, X = x],

Introducing,

ℙ [Y(a) = 1 ∣ X = x] = b(x) + a ((1 − b (x)) mb (x) − b (x) mg (x)), where b(x) := p0(x) .

Considering a binary outcome, assume that 

allows to have,

∀x ∈ 𝕏, ∀a ∈ {0,1}, 0 < pa(x) < 1, where pa(x) := ℙ [Y(a) = 1 ∣ X = x] Assumptions

More events Less events77



Back to generalizability
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Remember: we want to transport trial findings to a target population, using the trial 
data and a sample of the target population



Two methods, two assumptions
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All shifted prognostic covariates All shifted treatment effect modifiersUnformal

Assumptions 
for RD {Y(0), Y(1)} ⊥⊥ S |X Y(1) − Y(0) ⊥⊥ S |X

S is the indicator of 
population’s membership

Identification

Less covariates if homogeneity

Generalizing Conditional potential outcomes Local effects



Two methods, two assumptions
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All shifted prognostic covariates All shifted treatment effect modifiersUnformal

Assumptions 
for RD {Y(0), Y(1)} ⊥⊥ S |X Y(1) − Y(0) ⊥⊥ S |X

S is the indicator of 
population’s membership

Identification 𝔼T [Y(a)] = 𝔼T [𝔼R [Y(a) ∣ X]] τT = 𝔼 [w(X, Y(0))τR(X)]
Possible only if 

collapsible!

Less covariates if homogeneity

Generalizing Conditional potential outcomes Local effects

— Depending on the assumptions, either conditional outcome or local treatment effect can 
be generalised



Generalizing local effect, the example of a binary Y and a beneficial effect 
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τRR(x) = 1 − mg(x)
Conditional RR only vary with the 

shifted treatment effect modulators

𝔼 [τRR(X)
𝔼 [Y(0) ∣ X]

𝔼 [Y(0)] ] = τRR

i.e. reducing number of events

Estimate using target 
sample

Estimate using 
trial sample

⚠ We need to have 
access to Y(0)!



A toy simulation

82

Introducing heterogeneities in the Russian roulette 

- Probability to die varies 
- Stressed people can die from a heart attack 
- Executioner more merciful when facing women



A toy simulation
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Introducing heterogeneities in the Russian roulette 

- Probability to die varies 
- Stressed people can die from a heart attack 
- Executioner more merciful when facing women

P[Y = 1 | X] = b(X1->3) + (1- b(X1->3)) m(X2->3) 

X1 : lifestyle general level 

X2 : stress 

 X3 : gender (not shifted)

— Local SR can be generalised using only stress. All others measures requires lifestyle and 
stress.



Contributions
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All started from motivating example from critical care and two data samples with  CRASH-3 & Traumabase 

This leaded us to tackle a the broader scope : trial’s findings generalisation. 

We realised from application that many challenges remain: missing covariates, covariate selection, consistency, 
impact of the causal measures, etc. 

Our contribution is to provide theoretical and methodological results to strengthen the practice: 

- Consistency proofs 
- Sensitivity analysis 
- Finite and large sample results of IPSW 
- Characterisation of the impact of adding non necessary covariates on precision 
- Impact of the causal measure on transported treatment effect identification 



Future work
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This work opens new research questions 

• Extension of the theoretical finite and/or large sample results for  
G-formula and AIPSW, and not only IPSW, 
In a context where covariates are not categorical, 
When the ratio is targeted  

using local effect or  
conditional outcomes re-weighting. 

• Confront model with empirical data   
Is the assumption of a completely beneficial or harmful effect valid in practice? 
Using meta-analysis or different trials, investigate which causal measure is more or less 
dependent on the baseline level.



Why focusing on finite sample results? (1)
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(1) Usual sample sizes in 
medicine remains small 

(2) Results from simulations 
warned me and raised my 
interest

- Simulation set up from Nie 
and Wager 
- Estimation with AIPW using 
either forest or linear models 
for nuisance parameters 
estimation

Forest Linear

Sample sizes



Why focusing on finite sample results? (1)

87

(1) Usual sample sizes in 
medicine remains small 

(2) Results from simulations 
warned me and raised my 
interest

- Flexible estimation of the 
nuisance parameters 
guarantees large sample 
consistency… 

- But at the cost of a finite 
sample bias!

Forest Linear

Sample sizes

Mispecification bias

Finite sample bias



Why focusing on finite sample results? (2)
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Sample sizes

Identification bias

- Flexible estimation of the 
nuisance parameters 
guarantees large sample 
consistency… 

- But at the cost of a finite 
sample bias! 

- Using a naive IPW with bins 
ensures a better finite sample 
risk than AIPW, at the cost of 
an identification bias that does 
not disappear with a bigger 
sample size.



Logistic regression and Russian roulette
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Logistic regression and Russian roulette
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Illustration on a toy simulation
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Continuous outcome and 
binary baseline covariates X

Hypothetical trial’s results

Population’s shift



Illustration on a toy simulation
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Continuous outcome and 
binary baseline covariates X

Hypothetical trial’s results

Population’s shift

Empirical variance for different sizes n and m (6,000 repetitions for each dots) and different regimes

- Convergence speeds depend on the regime —  i.e relative sizes of n 
and m, 

- Completely oracle IPSW has a bigger variance than the semi-oracle 
IPSW.



Ranges of effects
Risk Difference (RD)
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Number Needed to Treat (NNT)

Risk Ratio (RR) Survival Ratio (SR) Odds Ratio (OR) Log-Odds Ratio (log-OR)

How to read plots



Common properties discussed
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∀x1, x2 ∈ 𝕏, τ(x1) = τ(x2) = τHomogeneity

∃x1, x2 ∈ 𝕏, τ(x1) ≠ τ(x2)Heterogeneity

⚠ No non-zero effect can be 
homogeneous on all metrics

How the effect changes on sub-groups

How the effect changes with labelling

e.g. Odds Ratio is symmetric, while Risk Ratio is not

X

Y 

A=1

A=0

A=0
A=1
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2+1 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting 
2. Model the response on the trial and impute the target sample — plug-in G-formula 
3. Combine the two into a doubly robust approach — A(ugmented) IPSW

See Colnet et al. 2021, published in Journal of Causal Inference

Consistency (Informal)

̂τAIPSW,n,m
L1

⟶
n,m→∞

τT

Considering that estimated surface responses are obtained following a cross-fitting estimation, 
then if IPSW or G-formula assumptions are ensured, then


