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1. Introduction
A. Motivating example from critical care medicine
B. State-of-the-art

— Focus on two contributions —

2. Finite and large sample analysis of the IPSW estimator

3. Extension to different causal measures




A longstanding presence of Randomized Controlled Trials (RCTs)
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A longstanding presence of Randomized Controlled Trials (RCTs) ... now being the gold-
standard
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IN THREE PARTS.
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1 Curel sttt Difal VERQUVO vericiguat January 19, 2021 Treatment of chronic heart
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RCTs' principle : estimating a causal effect

Principle
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RCTs' principle : estimating a causal effect

Principle

Assign treatment e.g. 18.5% dead
>

/ j t l i Measure outcome
. - >
Random split in each group
ﬁ k Assign control
>

e.g. 19.5% dead

T

In practice :

the CRASH-3 trial investigating Tranexamic Acid effect on brain injured (TBI) related death

Results Between July 20, 2012, and Jan 31, 2019, we randomly allocated 12737 patients with TBI to receive tranexamic
acid (6406 [50-3%] or placebo [6331 [49-7%)], of whom 9202 (72-2%) patients were treated within 3 h of injury.
Among patients treated within 3 h of injury, the risk of head injury-related death was 18-5% in the tranexamic acid
group versus [19:8% in the placebo group (855 vs 892 events; risk ratio [RR] 0-94 [95% CI 0-86-1-02]).

Source: Screenshot from the Lancet (CRASH-3 main report)




The scope of RCTs is increasingly under scrutiny

k ﬁ Assign treatment e.g. 18.5% dead
Measure outcome N
Random spllt in each group
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Limiked sotm[;?i.e size

e.g. 19.5% dead

Traa&ments camptmmce far from
real world observance

Unrepresentativeness of the
population

Short timeframe



The scope of RCTs is increasingly under scrutiny

k ﬁ Assign treatment e.g. 18.5% dead
Measure outcome N
Random spllt in each group
” k Assign control ” k

Limiked sotmpi.e size

e.g. 19.5% dead

Traa&man&s comptmv\ce far from

, real world observance
Unrepresentativeness of the

popul&t&an

Short timeframe

"'External validity’ asks the question of generalizability: to what populations, settings, treatment variables, and
measurement variables can this eftect be generalized?” — Campbell and Stanley (1963), p. 5



The promise of detailed and larger observational or real world data sets

Estimate the efficacy in real-world conditions
- Using large cohorts like hospital data bases

- To emulate a target trialV leveraging observed
confounding variables

- Solving both representativity and effective
treatment given

O Large sample enabling more personalization (i.e
stratified effects)

(1) Hernan and Robins, Using Big Data to Emulate a Target Trial When a
Randomized Trial Is Not Available, Am J Epidemiol, 2016

oIy U.S. FOOD & DRUG

FRAMEWORK FOR FDA'S

REAL-WORLD
EVIDENCE
PROGRAM

Source: FDA's website



The example of a large French national cohort — The Traumabase

e 30,000 patients of unique size and granularity in Europe (~9,000 suftering from TBI)

e But randomisation does not hold, e.g. severe trauma are more likely to be treatea

Among control Among treated
16% dead 38% dead

Confusion prabtem

10



The example of a large French national cohort — The Traumabase

e 30,000 patients of unique size and granularity in Europe (~9,000 st
e But randomisation does not hold, e.g. severe trauma are more like

16% dead

Among control Among treated

38% dead

ftering from TBI)
y to be treatea

Confusion prabtem

After adjustment on confounding covariates (Glasgow score, age, blood pressure, ...), the null

hypothesis of no effect can not be rejected@.

The risk of head injury-related death reduced with tranexamic acid in patients with mild-to-moderate head injury (RR 0-78 [95%

Cl 0-64-0-95]) but not in patients with severe head injury (0-99 [95% CI 0-91-1-07]

(2) Mayer et al., Doubly robust treatment effect estimation with missing attributes, Annals of Applied Statistics 2019
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https://www.imkemayer.com/publication/doubly-robust-na/

ldea — Using both types of data : experimental and observational

Fear of unobserved confounding in the observational sample.

12



ldea — Using both types of data : experimental and observational

Fear of unobserved confounding in the observational sample.

Both Randomized Controlled Trial (RCT) data and observational data have limitations and

advantages.

The idea is to combine them to get the best of both worlds.

Causal inference methods for combining
randomized trials and observational studies:

a review

Bénédicte Colnet!, Imke Mayer', Guanhua Chen, Awa Dieng, Ruohong Li, Gaél Varoquaux,
Jean-Philippe Vert, Julie Josse?, Shu Yang”

Accepted for publication in Statistical Science
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ldea — Using both types of data

Fear of unobserved confounding in the observational sample.

Both Randomized Controlled Trial (RCT) data and observational data have limitations and

advantages.

The idea is to combine them to get the best of both worlds.

Causal inference methods for combining

randomized trials and observational studies: — Using observational data to
a review improve trial's representativity

Bénédicte Colnet!, Imke Mayer!, Guanhua Chen, Awa Dieng, Ruohong Li, Gaél Varoquaux,
Jean-Philippe Vert, Julie Josse?, Shu Yang*

Accepted for publication in Statistical Science
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Generalizing or transporting CRASH-3 findings to the Traumabase population

Source CRASH-3 Traumabase

15.0%
10.0%

5.0%

Relative frequencies

0.0%

4 8 12 16
Glasgow score

“What would have been measured as an effect in CRASH-3 if the trial was
sampled in the Traumabase’?”
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Generalizing or transporting CRASH-3 findings to the Traumabase population

o High density of trial's individuals
O High density of target's individuals

Untreated

Probability of death

Glasgow score

Hypothetical drawing of how the Glasgow
score could modulate treatment effect

16



State-of-the art in a Nutshell

- Foundational work in epidemiological books (Rothman & Greenland, 2000)
- |dea of using two data sets (Stuart et al. 2010 and Pearl & Barenboim 2011)
- Flourishing field .... in statistics!

- Usually clinical papers focus on characterising the lack of representativeness

* Comparison of Table 1
* % of patients actually treated that would have been eligible

17



Notations

For each individual i, consider each of the possible outcomes for treated Y, and control Y(©)

chra&&e_ris’ts bi&\arfj Ereabmwent
. | yAYD : VAN 4 ,

O f‘ NA ? a o

; O NA f 1 |1 1 |

1 | © | NA| O
o 1
1 1

NA | 1

Individual effect Ai — Yi(l) — Yi(O)
1 | NA

| F L

Detailed introduction to potential outcomes framework from Imbens and Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences, 2015
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Detailed introduction to potential outcomes framework from Imbens and Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences, 2015
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The potential outcomes framework for generalization

Denoting,

- A the binary treatment
- X the covariates

- Y the observed outcome

Two samples,

- A trial of size n sampled from a
population pr(X),

- A data set of size m sampled
from pr1(X) the target
population of interest.

20



The potential outcomes framework for generalization

Denoting, ©s
I N “,.-...n .“
| PR ': ~~~~~ R PT
- A the binary treatment | |
- X the covariates A lly
- Y the observed outcome A ~ Pr X ~ Pr
{ [r - 1 3.3 M
‘T«\ 1 0.4
' H:WW 0 || 78 T
Two samples, WT Tﬁ‘k
Trial R | |
- A trial of size n sampled from a Target sample I

population pr(X),

- A data set of size m sampled
from pr(X) the target
population of interest.
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The potential outcomes framework for generalization

Denoting, Ca el
’ \\ “-.-.-“‘ ‘0‘
| PR ! ~. . PT
- A the binary treatment | |
- X the covariates A lly
- Y the observed outcome A ~ Pr X ~ Pr
{ - 1 3.3 m
W I 1 || 04
AL s | | 0 || 78 =
17T
Two samples, ATHTT Tﬁ}
Trial R | |
- A trial of size n sampled from a Target sample I

population pr(X),

- A data set of size m sampled
from pr(X) the target
population of interest.
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Generalization’s causal assumptions

Transportability assumption

Vxe X, P,YV-YP|X=x)=P (YD -YY|X=1x)

— Needed covariates are shifted treatment effect modifiers.
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Generalization’s causal assumptions

Transportability assumption

Vxe X, P,YV-YP|X=x)=P (YD -YY|X=1x)

— Needed covariates are shifted treatment effect modifiers.

Several versions in practice

e.q. of a lighter version Vx € X, R [Y(l) — Y(O) ‘ X = X]

Most common notakion where S |
denotes the sampie’s indicator i

Yy —yO 1 §1Xx

Nguyen et al. 2017

24

= [P0 — YO | X = A

Dahabreh et al. 2020

(YW yOr 11 §1X

Stuart et al. 2011



Generalization’s causal assumptions

Transportability assumption

Vx € X,

L

HYW YO X =x) =]

— Needed covariates are shifted treatment effect modifiers.

Positivity assumption

— Each individuals in the target population has to be represented in the trial.

T(Y(l) — Yy | X = x)

SUpp(Pp(X)) C supp(Pr(X))

25



2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting

Trial daka

A Comtrol | | A A A A N
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2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting

Trial daka

A Cownkrol

Definition

Symi of /“\

TIPSWn m

™= ‘PQCT(A::L)
Typically T = 0.5
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2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting

Trial daka

A Conkrol

Definition

pirit of 7 % 1 Ly PrmX) ( A Y —A)) T = Pearl{ A=1)

TlPSan —

1 — 7 T:jpu‘:auv w = 05

zETna
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2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting

Trial daka

A
A , A
X ., A A
A Conkrol A
Consistency  Assuming that Y is square integrable, and that
. Pr a.s. 1
(H 1) Sup |Wn,m(x) ()C) | — €n,m 0 then T IPSW L) ir
x€XL . PR 7, =00 s 7,1M—> 00
(H2)  Elg,,] — O
1,1—> 00

See Colnet et al. 2021, published in Journal of Causal Inference 29



2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting
2. Model the response on the trial and impute the target sample — plug-in G-formula

Trial daka

A Conbtrol A A A A A
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2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting
2. Model the response on the trial and impute the target sample — plug-in G-formula

Trial daka

I Eskimabed own the Erial
A f,(X) = ElY|A=0

A Conkrol

31



2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting
2. Model the response on the trial and impute the target sample — plug-in G-formula

Trial daka

I Eskimabked on Ehe Erial

A 0. X):=E[Y|A=0
A Control T A Mo’n( ) [ ‘ ]
Definition 1
Marginalised R %G,n,m .= % Z ///t\ l,n(Xi) R ///t\O,n(Xi)

on the target i€Target

sampte
32



2 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting

2. Model the response on the trial and impute the target sample — plug-in G-formula

Trial data ',"
A X):=E[Y|A=0
A Conkrol T A Mo’n( ) [ ‘ ]
Consistency
A P
(Hl) = [‘//ta,n(X) _//ta(X)‘ ‘ T] — O R L1
n— 00 then TG,n,m — T
(H2) 3C,,N, Vn>N, E[R2,X)|2,]<C, =0

See Colnet et al. 2021, published in Journal of Causal Inference
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Application on the CRASH-3 & Traumabase example

Widely varying results!

Difference_in_means el
MIA_AIPW grf e
Context
MIA _IPSW.norm_grf | o : . Generalization
g&+3 variables)
o bservatlo_nal data
MIA G-formula_grf ” 1(921 variables)
(O variables)
MIA_AIPSW grf | °
EM_AIPSW gim f ®

04 02 0.0 0.2 04 0.6
ATE

Extract of the applied results published in
Statistical sciences.
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Application on the CRASH-3 & Traumabase example

Widely varying results!

o Effect of tinite sample?

Difference_in_means el
MIA_AIPW_grf o e Which covariate to include? -—
Context would adding prognostic variables
MIA _IPSW.norm_grf : o : . Generalization : :
3+3 variables) reduce the variance as in the
o bservatio_nal data .
MIA_ G-formula_grf v RGP varanles classical case?

(O variables)

MIA_AIPSW grf

e Clinicians collaborators where
EM_AIPSW gim | — rather interested in the ratio,
04 09 00 05 04 06 rather than the difference
ATE

Extract of the applied results published in
Statistical sciences.
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Contributions

1. A review of methods to combine experimental and observational data

— Causal inference methods for combining randomized trials and observational studies: a review, co-authored with
Imke Mayer, Statistical Science, 2022

2. Consistency proofs and sensitivity analysis for generalisation

— Causal effect on a target population: A sensitivity analysis to handle missing covariates, Journal of Causal
Inference, 2022

3. Properties of IPWS and discussion on covariates selection

— Reweighting the RCT for generalization: finite sample error and variable selection, in revision in JRRS-A

4. Extension of generalization to other causal measures than the difference

— Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?, submitted to Stat. In Med.
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Recalling what is done on a classical clinical randomized trial

Hc«rvi&ﬁfkomsa

estimator 2 _ YiAi B Yl(1 o Ai)
Hln — " 7 1 _ ”
i€Trial e

. ?’rcbabiuﬁj to receive
¥ breabtment, usuai.lv 0.8
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Recalling what is done on a classical clinical randomized trial

Horv&%amfkomsa

estimator ( YlAl . Yl(l B Al) )
: : /4 1 — _ ‘Probabi&i%\j to receive
i€Trial T—— Ereabment, usuo\uj 0.8
Properties
A (] E [0y
- [THT,I/I] - TR nvar [%HT,I”I] — - — _1 - T2 .= VHT
T — T

Unbiased Finite sample variance
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Enriching the trial data with the target sample data

A Depends on n and m '

R ] PramX) (YA, Y(1—-A)
tiPSWanm — Z B

lETrzal pR n(X) I =—x
«— »
Same as single RCT
Wished properties?
= [ Bpswa] = 71 nVar [ipswan) =2

Unbiased

40




Theoretical guarantees of IPSW with oracle weights

T |l —nx

B pAX) (A,. l—Ai)

JtTRn - o
n o Pr(X;)



Theoretical guarantees of IPSW with oracle weights

D TR e
Y n - JT — T
Finite-sample properties — Oracle weights
2ok B _ Yo
- _Tﬂ,T,R,n_ — 1T Var _Tﬂ,T,R,I’l_ — 7

(X) (X)\”
where ¥, = Varg [Z(X) T(X)] TR [(Z@)) VHT(X)]
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How do we estimate weights in practice?

Assumption: assume X is composed of categorical covariates — e.g. smoking status, gender, ...

X; A 1 —-A.
T _Z pT((X)) i( l l) where  Prn(X) = Zl X=x

IER PR 4 I —m ZE[R
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How do we estimate weights in practice?

Assumption: assume X is composed of categorical covariates — e.g. smoking status, gender, ...

X; A 1 -A.
T _Z pT(();) Yi( l l) where  Prn(X) = Zl X=x

IER PR 4 I —m le[R

Finite-sample properties — Semi oracle weights

- Positive

[T:Tn] —rT T ZPT(X)<1 — Pr®)) ) compared to the oracle estimate due
xex to undercoverage of some categories
2V, " , in the trial
Var [T* ] < + | I —minpp(x) | Es[o(X
n,T.n n+ 1 ( xGXpR( )> T[( )]
- Smaller asymptotic variance than the
i - le estimate®
prX) ) PrX) e
where V, =E ( Vyr(X)| =V, — Var T(X)
I\ T " LR

(4) Robins et al. (1992). Estimating exposure effects by modelling the expectation of exposure

conditional on confounders. Biometrics. 44



Theoretical guarantees of IPSW with completely estimated weights

VaN
Tﬂ,n,m

_t pT, Y<—l— l)

n icP ﬁR,n(Xl) | 7T 1 — /4

Finite-sample properties — Fully estimated weights
- Same bias as the semi oracle:

e, | = 7= = 2 (1= pe0) " o)

xeX

Varft, ] < 2V, Var; [2(X)| - Two sample size: RCT (n) and observational
S | m study (m)
L2 - (O = pr (X)) VHT(X)_ . Add|t|one;| term decrgasmg as 1/.m
m(n+ 1) P (X)” compared to the semi oracle estimate
o\ ni2 A ) e Consistent if both n and m — . In this case,
N (1 N mxinpR(x)> Er [7X)] (1 +E> the first two terms dominate.
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IPSW Large sample properties

Large sample properties — Fully estimated weights

Letting lim m/n = A € [0,00],

n,1mM— 00
. . X | Var [T(X)]
lim min(n, m)Var [Tﬂn m] = min(1,4) + V,
7,1M—> 00 T A
I , asymptotic variance = semi-oracle’s one and depends on the ratio of
probabilities

I , asymptotic variance = conditional treatment effect variance
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IPSW Large sample properties - lllustration

— 50 200 800
M o 100 — 400 1600
0.4
Practical recommandation

= 0.3
o
= e.g. When n = 200 and m = 50, it is
@) .
@ 0.2 better to double the size of the
3 observational data than that of the
S - OO RCT.

0.1

200 400 600

Trial size n
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Impact of additional covariates: for the worse?

- Covariates needed to generalize are, or(V=1) ® 025 ® 05

A covariate along which the treatment effect is

modulated - 3.0
. 0
Not th tion | h |ati = 2.5
O € same proportion In each popuiation E :
Q
c
§ 2.0
- In practice, one may be tempted to add S
. 1.5
many covariates
* |t does prevent to miss important ones
1.0

e But what happen if gender is added but is only shifted?

0.25 0.50 0.75
pr(V=1)

Dots are simulations, plain lines are the theory introduced on next slide
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Impact of adding a shifted covariate which is not treatment effect modifier

Non treatment effect modifier

V does not modulate treatment effect, that is

Vve V,Vs € {T,R}, PYV-YYV|X=x,V=v)=P (YD -YD| X=x)

49



Impact of adding a shifted covariate which is not treatment effect modifier

Non treatment effect modifier

V does not modulate treatment effect modifier, that is

Vve V,Vs € {T,R}, PYV-YYV|X=x,V=v)=P (YD -YD| X=x)

Shifted covariate which is not a treatment effect modifier

Consider the semi-oracle IPSW estimator and a set of additional shifted covariates V, independent of X,

which are not treatment effect modifier, then

: I pT(V)2 : A |
lim n Varg Tnm(X V) = Z lim n Varp [T (X)

n— 00 ey pR(V) n— oo L Ln,m

Including non-necessary covariates can seriously damage precision
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Impact of adding a non-shifted covariate which is a treatment effect modifier

Non-shifted covariate

V is not shifted, that is
Vv eV, pr(v) = pp(v).

Non-shifted covariate which is a treatment effect modifier

Consider the semi-oracle IPSW estimator and a set of additional non-shifted treatment effect modifier set
V, independent of X. Then,

: FA | : PA | PT(X)
lim n Varg |25 (X, V)| = lim n Varg |25 (X)| - E; T Var [#(X, V) | X|
n—Qod - = n—>oo E _ R

Including non-necessary covariates can improve precision
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Semi-synthetic simulation

We illustrate the results on semi-synthetic simulations

- Simulations are built from CRASH-3 (~ 92,000 individuals) and Traumabase (~30,000 individuals);
- Doing so, this reflects a real-world shitt;

- Covariates are : Glasgow score, gender, time-to-treatment (TTT), blood pressure;

- Time to treatment is simulated as not present in the Traumabase;

- As all covariates are shifted (even a little), a non-shifted treatment effect moditier Z is created

- The outcome is synthetic.

Y = 10 — Glasgow + (if Girl: — 5 else:0) + A (15(6 — TTT) + 3 * (Blood.pressure — 1)* + 50Z) + &7

]

Random gaussian hoise whose

variance depends on the value of TTT
52



Results from the semi-synthetic simulations (1)

65 o)

60

Target effect I
55

ATE

50

Trial's population effect

45

40

Estimate on the trial IPSW IPSW

(Horvitz-Thomson) Estimating Pj

This simulation does not include Z as the focus is not on adding non-
useful covariates

1. Re-weighting allows to recover the target effect

2. Two additional theoretical results not detailed
above

- the
probability to be treated in the trial Pi,
- Re-weighted trial
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Results from the semi-synthetic simulations (2)

Effect of non-necessary covariates on
the variance

IPSW with n = 3000 and m = 10000 and
1,000 repetitions

- The addition of the covariate GCS
increases the variance,

- while the addition of a non-shifted
treatment effect modifier leads to an
Improvement in variance.

40

30

AlE

20

10

Minimal set
+ shifted covariate

54

o
Minimal set Minimal set

+ treatment effect modifiers

This simulation includes Z as the focus is on adding non-useful covariates



Risk ratio, odds
ratio, risk
difference

Which causal measure is
easier to generalize?




Contributions

1. A review of methods to combine experimental and observational data

— Causal inference methods for combining randomized trials and observational studies: a review, co-authored with
Imke Mayer, Statistical Science, 2022

2. Consistency proofs and sensitivity analysis for generalisation

— Causal effect on a target population: A sensitivity analysis to handle missing covariates, Journal of Causal
Inference, 2022

3. Properties of IPWS and discussion on covariates selection

— Reweighting the RCT for generalization: finite sample error and variable selection, in revision in JRRS-A

4. Extension of generalization to other causal measures than the difference

— Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?, submitted to Stat. In Med.
56



lllustrative example

RCT from Cook and Sackett (1995)

-'Y the observed binary outcome
- A binary treatment assignment
- X baseline covariates

Stroke after 5 years
11.1% Control — vs— 6.7 % Treated

Usually referring to an effect, is related to how
one contrasts those two

e.g. Ratio = 6.7/11.1 = 0.6 or Diff = - 0.04
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= [v©)
Potential outcomes framework —

lllustrative example T E Y]

5‘ Count the stroke | - Count the non-stroke

Yy

RCT from Cook and Sackett (1995) |

-'Y the observed binary outcome
- A binary treatment assignment

- X baseline covariates

M. Risk Difference

Stroke after 5 years

11.1% Control — vs— 6.7 % Treated 1 0dds Ratio

— A variety of causal measures exist Note that for binary Y,
” E[ V()] = P(Y(a)=1)




Computing all the measures on the illustrative clinical example

X=z=lcrlow [ X =1

baseline riske X —

TrD TRR Tsr TNNT Tor

All (Ps) | —0.0452 | 0.6 | 1.05 | 22 | 0.57
—0.006 | 0.6 | 1.01 | 167 0.6

—0.08 0.6 | 1.1 13 0.545

Computed from Cook & Sackett (1995)

Marqginal effects T

“Treated group has 0.6 times the risk of having a stroke outcome when compared with
the placebo.” or' "'The Number Needed to Treat is 22."

— leads to different impressions and heterogeneity patterns
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The age-old question of how to report effects

" We wish to decide whether we shall count the failures or the successes and
whether we shall make relative or absolute comparisons”

— Mindel C. Sheps, New England Journal of Medicine, in 1958

Source: Wikipedia

The choice of the measure is still actively discussed

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al.,
2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 ...

— CONSORT guidelines recommend to report all of them
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A desirable property: collapsibility

i.e. population’s effect is equal to a weighted sum of local effects

) Wﬂ Discussed in Greenland, 1987: Hernan et al.
Weighted sum

2011; Huitfeldt et al., 2019; Daniel et al., 2020;
N T Didelez and Stensrud, 2022 and many others.

61



A desirable property: collapsibility

i.e. population’s effect is equal to a weighted sum of local effects

2 &Y, AV
.' .' .’ ] | iﬁ Discussed in Greenland, 1987: Hernan et al.
y " wébgkﬁéd sum 2011; Huitfeldt et al., 2019; Daniel et al., 2020;
.’ ." T T Didelez and Stensrud, 2022 and many others.
: yinal b
A very famous example: the Simpson paradox M";S"‘ ol effec
tgger thawn
(a) Overall population, Tor = 0.26 (b) Tor|F=1 =~ 0.167 and Tog|p—o =~ 0.166 SubnguFS’
A=1 | 1005 95 A=1 40 60 A=1 | 965 39
A=0 | 1074 26 A=0 80 20 A=0 | 994 6

Toy example inspired from Greenland (1987).

— Unfortunately, not all measures are collapsible
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Collapsibility and formalism

e Different definitions of collapsibility in the literature
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Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

1. Direct collapsibility & [T(X)] = T
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Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

1. Direct collapsibility [E [T(X)] = T

2. Collapsibility E [w(X, P(X, Y) 7(X)| = . withw > 0,and E |w(X, P(X, Y))| =1

RR is collapsible, with (X) : :Y(O) ‘ X]
e. IS collapsible, wi - | T =7
g & RR _ [Y(O)] RR
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Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

1. Direct collapsibility & [T(X)] = T

2. Collapsibility E [w(X, P(X, Y) 7(X)| = . withw > 0,and E |w(X, P(X, Y))| =1

3. Logic-respecting 7 € |min(z(x)), max(z(x))
X X
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Collapsibility and formalism

e Different definitions of collapsibility in the literature

* We propose three definitions encompassing previous works

1.
2. Collapsibility

3. Logic-respecting 7 &

Direct collapsibility

E [tX0)| =7

= (WX, PXX, YO)) 2(X)| =,

X X

with w > (), and

min(z(x)), max(z(x))

Measure Collapsible | Logic-respecting
Risk Difference (RD) Yes Yes
Number Neeeded to Treat (NNT) No Yes
Risk Ratio (RR) Yes Yes
Survival Ratio (SR) Yes Yes
Odds Ratio (OR) No No

67
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Through the lens of non parametric generative models

For Y continuous,

E’?xp@.a%ac& response «

(*) This only assumes that conditional expected responses are

defined for every x 68



Through the lens of non parametric generative models

Lemma”®

For Y continuous,

There exist two functions b(.) and m(.) such that,
Exp&a&aa& response «

. b= i
g

= (Y9 | X| = b(X) + am(X)

“ ‘v
|

N = -
| —
*)_—
;‘ , *‘4//
| * =
- .
T
Y

b
3
.
b | .
rilieon:

s > i
/ . £ .
i _ =~ — . -
‘ ( 2 ! > = = =

| ) B e &

1 J g > e

i P —

g ) + = x
”f P - =i e

" e 4

H i g _ % .

’ [ . adl = — <o

! 7 D
- > _ ="
- = v

¢

y g
p 4

©)

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

==

(*) This only assumes that conditional expected responses are
defined for every x 69



Through the lens of non parametric generative models

Lemma”®

For Y continuous,

There exist two functions b(.) and m(.) such that,
E’?xp@;c%e.c& response «

= (Y9 | X| = b(X) + am(X)

Spirit of Robinson’s decomposition (1988), further developed in Nie et al. 2020

Linking generative functions with measures

Tpp(X) = 1 + m(x)/b(x) Entanglement

TRD(X) = m(x) No entanglement

(*) This only assumes that conditional expected responses are

defined for every x 70



Through the lens of non parametric generative models

\ - //v
Lemma =

For Y binary, -

S . e /’/ )
There exist two Ttmgtions b(.) and m{g#Such that,

_—
SN

T P
\:\\ T
= o

= Y@ | XLZh( X g m(X)
I '\ Probability of event if treated |

N ~\‘
"

~
h
NN
s\
X
S

— Adapted Lemma

<)

N ’l \ vz Baseline ‘ There exist two functions b(.) and m(.) such that,
= Yf/ ) %

o - — e ——— P(Y®D =1 | X)
X | In = b(X) + am(X)

P(Y@ =0 | X)
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The example of the Russian roulette

For Y binary,

?robabai&v of event f treated

|
| by
1 =
= ////"" :
== =
= L5 /
= g o ;
i .

? _ Baseline

Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020) 79

Harmful

[ \\\\xx_, \m\\\

%



Harmful

[ \\\\xx_, \m\\\

The example of the Russian roulette <y %

For Y binary, Lemma
There exist two functions b(.) and m(.) such that,
Probability of event if treated P [Y(“) =1| X] = b(X)+ a (1 —b (X)) -
1 % e Simple acidi%ivi?:v s not passibi@; anymore
{ /j ‘Bo\setme

Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020) 73



The example of the Russian roulette

For Y binary,

Probability of event if treated

“

‘7' 3

H \

33 4 V |
I - E

i ‘

| "

T
| =

=5 //f |
7 /
( ]
| _ Raseline
F

Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Harmftul
NI
1508

Lemma

There exist two functions b(.) and m(.) such that,

P Y@ =1]|X]| :b(X)+a(1—b(X))%

Simple acidi%ivi?:v is nok passibi@; anymore

Linking generative functions with measures
I
TRD(X) — (1 —_— b(x))g EM&QMSL@MQM%

TSR(X) =1 —-—— No entanglement

6




Harmful
!l \\\\LQ\JAL@{

The example of the Russian roulette LK

For Y binary,

Probability of event if treated

“

‘7' 3

H \

33 4 V |
I - E

i )

: e

T
| =

=5 //f |
7 /
( ]
| _ Raseline
F

Example from Anders Huitfeldt, further used in Cinelli & Pearl (2020)

Lemma

There exist two functions b(.) and m(.) such that,
P YYD =1|X|=bX)+a(l-bX)mX)

Simple acidi%ivi?:v is nok passibi@; anymore

Linking generative functions with measures

Trn(x) = (1 — b(x))m(x) Entanglement

TSR(X) = 1 — m(x) No entanglement
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Extension to all effect types (harmful and benetficial)

Considering a binary outcome, assume that

Assumy%i,oms

Vxe X,Vae {0,1}, O0<p (x)<1, wherep (x):=P [Y(“) =1]|X= x] '

Introducing,

my(x) =P [Y(l) =0| YV =1, X:x] and my(x) =P [Y(l) =1|YY =0, sz],
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Extension to all effect types (harmful and benetficial)

Considering a binary outcome, assume that

Assumy%i,oms

Vxe X,Vae {0,1}, O0<p (x)<1, wherep (x):=P [Y(“) =1|X= x] ’

Introducing,

my(x) =P [Y(l) =0| YV =1, X:x] and my(x) =P [Y(l) =1|YY =0, sz],

allows to have,

P =11 x=x] b0 +a ((L=bW)m,00 ~bm ). where b(x) = py(x).

Less evenks

More evenks 77



Back to generalizability

Remember: we want to transport trial findings to a target population, using the trial
data and a sample of the target population

AT i

l Sampled from l Sampled from
(0)
X A Y X Y
Trial Sample (RCT) 01/ 0 X
0
1 0

0 0 0
1 1 !
== 110 |0 (1)

ull l

We consider set-ups where control outcome is observed or not .}
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Two methods, two assumptions

Generalizing Conditional potential outcomes

Local effects

P nep— O R A PO ST N Rl A 2 , o pap— g A NI e e A SIS TN IE s A SR ST N et S ANl A S A N o ED P U URNP APPSR ¢ s aae oo it o e o i N i i T AN i Nl i i e o i e e e e e s

Assumptions

PR (YO yy 11 §1Xx

Unformal " All shifted prognostic covariates

|dentification

79

yh—y® 1 §1x

All shifted treatment effect modifiers

Less covariates if homogeneity



Two methods, two assumptions

Generalizing Conditional potential outcomes Z Local effects

SR A D RN ST N Rl A 2 , o s R S O R S TN s s A S AN S oSN ST N A S A N oS ED P U URNP APPSR ¢ s aae oo it o e e e N i) i N i N i 2 i ai e o i e e e e e s

Assumptions

for RD (Y®, vy} 1L 51X Yy —_y® 1 S|1x

Unformal |  All shifted prognostic covariates . All shifted effect moditfiers

Less covariates if homogeneity

ldentification = [Y (“)] = E' l R [Y (@) ] X]] ! = E ' TR(X)]
| '.' k?ossibla only it
~ collapsible!

— Depending on the assumptions, either conditional outcome or local treatment effect can
be generalised
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Generalizing local effect, the example of a binary Y and a beneficial effect

Estimate using
Erial s&mgi&

g
= | Thrp(X =7
RR - [Y(O)] RR
Estimate using karqet
sample
Trr(x%) = 1 = mg(x) I. We need to have
Conditional RR only vary with the access to Y(0)!

shifted treatment effect modulators

81



A toy simulation

Introducing heterogeneities in the Russian roulette

- Probability to die varies
- Stressed people can die from a heart attack
- Executioner more merciful when facing women

82



| Conditional outcome | | Local effects } - Identification strategies
o

® ® 13 ] o Not applicable.
(NNT is not collapsible)
A toy simulation : g
74 - — w S] NNT = Number Needed to Treat
6-__2___! ______ OR = Odds Ratio
° . RD = Risk Difference
3.5 - Not applicable RR = Risk Ratio
- M M o ® is not collapsible _ : :
Introducing heterogeneities in the Russian roulette 304 = 9 m oo o $ i (OR is not collapsitle) SR = Survival Ratio
251 +_ il
.. : : 2.0 -
- Probability to die varies e O Subset
- Stressed people can die from a heart attack o17sq e ! ¢ : ? ! Bl All prognostic covariates
. . . 0.150 - All shifted covariates
- Executioner more merciful when facing women 0.125 " -4 1 a——k
0100 All treatment effect modulators
.100 + [ ] o o) o
@] O
2.8 1 .
() L [
‘P{Y =1 l X] = b(X1->3> + (1“ b(X:L-?B)) M(Xz->s) 241 _ ? = = — 1 - —$ i RN -$ Ground truth
2.0 - -=—Fk=-aF = == -
X1 : lifestyle general levet — ——— — |7 Source effect
’ 0.88 ® ® ® ®
0.84 - —I—II —I—II - - -; _|_|I -------- Target effect
X2 : skress ' | | | |
0.80 - o o ® o ° °

X3 : gender (ot shifted)

— Local SR can be generalised using only stress. All others measures requires lifestyle and
stress.
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Contributions

All started from motivating example from and with CRASH-3 & Traumabase

This leaded us to tackle a the broader scope : trial’s findings generalisation.

We realised that many challenges remain: missing covariates, covariate selection, consistency,
impact of the causal measures, etc.

Our contribution is to strengthen the practice:

- Consistency proofs

- Sensitivity analysis

- Finite and large sample results of IPSW

- Characterisation of the impact of adding non necessary covariates on precision
- Impact of the causal measure on transported treatment effect identification
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Future work

his work opens

® Extension of the theoretical finite and/or large sample results for
> G-formula and AIPSW, and not only IPSW,
> In a context where covariates are not categorical,
> When the ratio is targeted
using local effect or
conditional outcomes re-weighting.

® Confront model with empirical data
> |s the assumption of a completely beneficial or harmtul eftect valid in practice?
> Using meta-analysis or different trials, investigate which causal measure is more or less

dependent on the baseline level.
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Why focusing on finite sample results? (1)

(1) Usual sample sizes in 9

o — e L — — R — — e — - L EE — - e EE — — - e — -+ —_ _— - - e — —_ — — e _— - —— e — - — — ..

medicine remains small

0.8

(2) Results from simulations

warned me and raised my

Interest ~§ - $‘

3 e S
I R T
- | R (B R

- Simulation set up from Nie |
and Wager 04
- Estimation with AIPW using !
either torest or linear models .
for nuisance parameters 0.2

300 1000 3000 10000 30000 1e+05 300 1000 3000 10000 30000 1e+05

estimation
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Why focusing on finite sample results? (1)

(1) Usual sample sizes in .
medicine remains small

o — e L — — R — — —— — — — e — — — e — — — e — -

~inike sam[ple bias
0.8

(2) Results from simulations
warned me and raised my

interest = $‘
£
[ e
B e -
| o o el i R < e Ll
- Flexible estimation of the |
nuisance parameters 0.4 .
guarantees large sample !
consistency... .
O
- But at the cost of a 0.2
300 1000 3000 10000 30000 1e+05 300 1000 3000 10000 30000 1e+05

| .
' Sample sizes
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Why focusing on finite sample results? (2)

- Flexible estimation of the o
. 1.5
nuisance parameters
guarantees large sample g esfirnafor
consistency... B3 aipw
- But at the cost of a B8 causal forest
| 2 ' ipw
. .g . ipw.bin.10
O B3 ipw.bin.20
. . . . ipw.bin.30
- Using a naive IPW with bins - pren
- a5 : Identification bias | E ipwbins
ensures a better finite sample Bl tiamer

risk than AIPW, at the cost of
an that does 0.5
not disappear with a bigger = - - o

sample size.
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Logistic regression and Russian roulette

Lemma 10 (Logit generative model for a binary outcome). Considering a binary outcome Y,
assume that

Vz e X, Va € {0,1}, 0<p.(z) <1, wherep,(z)=PYY=1|X=2).

Then, there exist two functions b,m : X — R such that

(a) —
. (IP’(Y 1] X)

PY@ =0 X)) = b(X) +am(X).
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Logistic regression and Russian roulette

Denoting b;(X) and m;(X) the functions for the intrication model, and b3(X) and my(X) for
the logistic model, one has:

) =0 (255

and

_ (m1(X) +b:(X))(1 = b1(X))) —1n b1 (X)
ma(%) =In (1 — (my(X) + b,(X))(1 — b1<x>>>> 1 (1 - b1<X>)

Taking the case of the Russian Roulette, one has

so that

and




lllustration on a toy simulation

Continuous outcome and
binary baseline covariates X

Target (Pr) | Trial (Pr)
30% 75%
70% 25%

ok
]l
S| =

Population’s shift

Estimated effect

All individuals X=0 X=1

Hypothetical trial's results
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lllustration on a toy simulation

Continuous outcome and

binary baseline covariates X

Target (Pr) | Trial (Pr)
X =11 30% 75%
X =01 70% 25%

Population’s shift

10

Estimated effect

4
All individuals X=0

X=1

Hypothetical trial's results

IPSW W 0.8

mmm Completely or semi oracle 25

m 1 Estimated

cq'\
~—~ 0.6
I
~~
. e 20 <p
Regime N =
©
-. Completely-oracle i U
= g 0.4
@ IPSW:m=vn = 15 o
~ O
) IPSW:m=2n g 'E—j-
( | ©
PSW:m = ®-0--0-9-0 =,
@ IPSW:m=n*n b ¥ L .Y I S/
@) IPSW:m=n/2
@) Semi-oracle o - Q= =@ = -9
S 0.0
50 100 150 200 250 100 200 300
Trial sample size (n) Trial sample size (n)

Empirical variance for different sizes n and m (6,000 repetitions for each dots) and different regimes

- Convergence speeds depend on the regime — i.e relative sizes of n
and m,

- Completely oracle IPSW has a bigger variance than the semi-oracle
IPSW.
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How ko read pi.c;:n&s

Ranges of effects

Risk Difference (RD) Number Needed to Treat (NNT)

Strong effect . No effect
| %% 20
o’ 0.4 .
\66 . 6\96 \ 15
1 ‘QQ o* %Q
E[Y®D] RN
o 0.50
s Q@(\ o 5 QQ(\ 00 . i
& L S
\x«% 2N
o’ -0.4 _
@ Strong effect i

0.25 0.50 0.75 0.25 0.50 0.75
% of events in control group % of events in control group

o
~
a

% of events in treated group

o
N
A

Odds Ratio (OR) Log-Odds Ratio (log-OR)

Risk Ratio (RR) Survival Ratio (SR)

80

6.000 6.000
. 4.000 g— 0.75 4.000 g— 0.75
) )
3.000 5, 3.000 60 B
2.000 © 2.000 o
© ©
1500 @ 1.500 o
1.000 £ 0.50 1.000 w0 E 0.50
2 2
0.667 € 0.667 c
QO QO
0.500 o 0.500 2
0330 © 0.330 20 o
o~ 0.25 o~ 0.25
0.250 0.250
0.170 0.170
0.25 0.50 0.75 0.25 0.50 0.75 93 0.25 0.50 0.75 0.25 0.50 0.75

% of events in control group % of events in control group % of events in control group % of events in control group



Common properties discussed

How the effect changes on sub-groups

Homogeneity Vx;,x, € X, 17(x) =1(x) =71

Heterogeneity dx, % € X, (X)) # 7(x,)

How the effect changes with labelling

e.g. Odds Ratio is symmetric, while Risk Ratio is not

94

y y
X & 4 >
| @ . B
K 1 7 4 _ —_— =
M 4 _ e -
O A S e -
' y __ B = ——— o coanaam
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R — e P = paiandce e

I. No non-zero effect can be
homogeneous on all metrics



2+1 main approaches to generalize

1. Re-weight the trial individuals — Inverse Propensity Sampling Weighting
2. Model the response on the trial and impute the target sample — plug-in G-formula
3. Combine the two into a doubly robust approach — A(ugmented) IPSW

Consistency (Informal)

Considering that estimated surface responses are obtained following a cross-titting estimation,
then if IPSW or G-formula assumptions are ensured, then

~ L'
TAIPS W.n,m > 17
n,m— 0o

See Colnet et al. 2021, published in Journal of Causal Inference
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